
Unravel: A Fluent Code Explorer for Data Wrangling
Nischal Shrestha
nshrest@ncsu.edu
NC State University

Raleigh, North Carolina, USA

Titus Barik
titus.barik@microsoft.com

Microsoft
Redmond, Washington, USA

Chris Parnin
cjparnin@ncsu.edu
NC State University

Raleigh, North Carolina, USA

Unravel Inspect Explore

CODE

OUTPUT

CODE

OUTPUT

CODE

OUTPUT

CODE

OUTPUT

Unravel Inspect Explore

Figure 1: Unravel is a tool that helps data scientists understand and explorefluent code via structured edits using drag-and-drop
and toggle switch interactions. The data scientist unravels fluent code to get access to intermediate outputs for each line. They
can then inspect a particular line of code and its respective output. Data scientists can explore the code using drag-and-drop
to reorder lines, and toggle switches to enable or disable lines and automatically produce new outputs to investigate.

ABSTRACT
Data scientists have adopted a popular design pattern in program-
ming called the fluent interface for composing data wrangling code.
The fluent interface works by combining multiple transformations
on a data table—or dataframes—with a single chain of expressions,
which produces an output. Although fluent code promotes legibil-
ity, the intermediate dataframes are lost, forcing data scientists to
unravel the chain through tedious code edits and re-execution. Exist-
ing tools for data scientists do not allow easy exploration or support
understanding of fluent code. To address this gap, we designed a
tool called Unravel that enables structural edits via drag-and-drop
and toggle switch interactions to help data scientists explore and
understand fluent code. Data scientists can apply simple structural
edits via drag-and-drop and toggle switch interactions to reorder
and (un)comment lines. To help data scientists understand fluent
code, Unravel provides function summaries and always-on visual-
izations highlighting important changes to a dataframe. We discuss
the design motivations behind Unravel and how it helps understand
and explore fluent code. In a first-use study with 14 data scientists,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474744

we found that Unravel facilitated diverse activities such as validat-
ing assumptions about the code or data, exploring alternatives, and
revealing function behavior.

CCS CONCEPTS
• Human-centered computing→ Graphical user interfaces.

KEYWORDS
data science, data wrangling, programming
ACM Reference Format:
Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent
Code Explorer for Data Wrangling. In The 34th Annual ACM Symposium
on User Interface Software and Technology (UIST ’21), October 10–14, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3472749.3474744

1 INTRODUCTION
Data scientists apply a common programming design pattern—the
fluent interface [13, 14]—when they transform and wrangle data
tables, or dataframes. The distinguishing feature of the fluent inter-
face is that it composes multiple operations into a chain, with each
operator in the chain accepting data from the result of the previous
operator, performing a computation on it, and passing its result on
to the next operator. Advocates for the fluent interface suggest this
style of programming improves readability by removing the need
to assign intermediate results to variables. To illustrate how fluent
interfaces are applied in practice, consider fluent code written in R
(Figure 2).

https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris ParninUIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species mfl
#> 1 Adelie NA
#> 2 Chinstrap 196.
#> 3 Gentoo NA

(a) Summarizing mean flipper lengths of penguin species.

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species flipper_length_mm
#>
#>
#> 4 Adelie NA

(b) Inspecting the line up to select with a dangling %>%.

Figure 2: An example of exploring fluent code in R, which out-
puts a dataframe of mean flipper lengths of different penguin
species.

gets piped (%>%) or passed to a select function to select columns,
species and flipper_length_mm. The result is piped to the func-
tion group_by function to group the data by the species column
which is finally piped to the summarise function to calculate the
mean of the flipper length (flipper_length_mm) according to each
species and store it in a new column, mfl. Note how the final code
is built up by solving smaller subproblems (selecting, grouping, and
summarising), forming a single large chain. But, what if there is a
problem with the final output?

Although fluent code is designed to be readable and concise,
these advantages come with a cost: isolating problems within a bro-
ken chain becomes a clerical and cumbersome process. Because
fluent code removes intermediate variables, one of its significant
disadvantages arises when the data scientist needs to inspect an in-
termediate result. In Figure 2a, a data scientist might be surprised
to find the mean of flipper lengths of the Adelie and Gentoo species
are NAs or “not available.” To hunt for clues, the data scientist is
forced to “unravel” the chain and find the “broken” link (Figure 2b),
where they have to modify and re-execute the code to discover
flipper_length_mm contains missing values, an easy to miss de-
tail. To verify the source of NAs, the data scientist had to comment
lines, remove a dangling pipe operator, and execute the code up to
the select function. They can then fix this issue by excluding rows
with NAs for flipper_length_mm could be removed by inserting a
function called drop_na before the select line.

We identified several limitations behind existing solutions to help
data scientists explore fluent code. Prior research has focused on
helping data scientists become more productive by managing messy
code [15], keeping track of versions [18], exploring alternatives [31]
or generating code [10] using programming-by-example techniques.
However, these tools are designed to help manage entire scripts

or notebooks, and do not provide affordances to easily understand
and explore code at a finer-grain level. In the R community, data
scientists have voiced a need to support introspection and debugging
tools for fluent code, with several attempts at solutions.1 Existing
inspection and debugging tools attempt to solve parts of the prob-
lem but fall short in several ways. Current solutions require a data
scientist to meticulously debug, log, and selectively execute of code.
For example, a debugger [3] is a heavyweight solution for exploring
fluent code and it forces the data scientist to linearly step through
their code. Printing intermediate results to the console—for exam-
ple, with tidylog [11]—is lightweight but generates noisy output.
Other solutions require newer types of operators to debug fluent
code which might introduce more issues.2 This suggests a need for
easily exploring and understanding fluent code in data science.

To address this need, we introduce Unravel, a tool that enables
structured edits using drag-and-drop and toggle switch interactions
with always-on visualizations to help data scientists explore and
understand fluent code. Unravel is a web application that runs within
the RStudio IDE. Using an interactive code overlay, data scientists
can unravel a chain of fluent code in R to examine intermediate
dataframes, understand the transformations of dataframes along the
chain, and apply simple structural edits without typing. Data sci-
entists can apply structural edits to fluent code by reordering lines
using drag-and-drop, or enabling or disabling lines using toggle
switches. To help data scientists understand each step in fluent code,
function summaries describe the transformations on dataframes and
always-on visualizations are used to highlight important changes to
dataframes. We designed Unravel to help data scientists get clarity on
data transformations, and reduce the burden of typing to manipulate
fluent code.

The contributions of this paper are:

(1) A tool called Unravel that enables structured edits via drag-
and-drop and toggle switch interactions with always-on visu-
alizations to help data scientists explore and understand fluent
code. We discuss the design motivations behind Unravel and
how data scientists can use it to support a variety of tasks.

(2) Through a first-use study with 14 data scientists, we demon-
strate that Unravel complements an IDE workflow, offers an
interactive way to explore fluent code, and supports a variety
of tasks related to understanding and writing data wrangling
code.

2 DEMO OF UNRAVEL
Asha is a data scientist who is familiarizing herself with tidyverse
R, a dialect of R that uses fluent code for data wrangling. Asha is
analysing the babynames dataset [33], which holds popular U.S.
babynames from 1880-2017, and she wants to calculate the percent
of male babynames and the ratio of males to females. She is unfamil-
iar with how grouping works and wants to check her assumptions
regarding the behavior of operations on grouped dataframes. To

1https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-
pipe-chains/14724
2https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-
pipelines-in-r/

(a) Summarizing mean flipper lengths of penguin species.

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species mfl
#> 1 Adelie NA
#> 2 Chinstrap 196.
#> 3 Gentoo NA

(a) Summarizing mean flipper lengths of penguin species.

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species flipper_length_mm
#>
#>
#> 4 Adelie NA

(b) Inspecting the line up to select with a dangling %>%.

Figure 2: An example of exploring fluent code in R, which out-
puts a dataframe of mean flipper lengths of different penguin
species.

gets piped (%>%) or passed to a select function to select columns,
species and flipper_length_mm. The result is piped to the func-
tion group_by function to group the data by the species column
which is finally piped to the summarise function to calculate the
mean of the flipper length (flipper_length_mm) according to each
species and store it in a new column, mfl. Note how the final code
is built up by solving smaller subproblems (selecting, grouping, and
summarising), forming a single large chain. But, what if there is a
problem with the final output?

Although fluent code is designed to be readable and concise,
these advantages come with a cost: isolating problems within a bro-
ken chain becomes a clerical and cumbersome process. Because
fluent code removes intermediate variables, one of its significant
disadvantages arises when the data scientist needs to inspect an in-
termediate result. In Figure 2a, a data scientist might be surprised
to find the mean of flipper lengths of the Adelie and Gentoo species
are NAs or “not available.” To hunt for clues, the data scientist is
forced to “unravel” the chain and find the “broken” link (Figure 2b),
where they have to modify and re-execute the code to discover
flipper_length_mm contains missing values, an easy to miss de-
tail. To verify the source of NAs, the data scientist had to comment
lines, remove a dangling pipe operator, and execute the code up to
the select function. They can then fix this issue by excluding rows
with NAs for flipper_length_mm could be removed by inserting a
function called drop_na before the select line.

We identified several limitations behind existing solutions to help
data scientists explore fluent code. Prior research has focused on
helping data scientists become more productive by managing messy
code [15], keeping track of versions [18], exploring alternatives [31]
or generating code [10] using programming-by-example techniques.
However, these tools are designed to help manage entire scripts

or notebooks, and do not provide affordances to easily understand
and explore code at a finer-grain level. In the R community, data
scientists have voiced a need to support introspection and debugging
tools for fluent code, with several attempts at solutions.1 Existing
inspection and debugging tools attempt to solve parts of the prob-
lem but fall short in several ways. Current solutions require a data
scientist to meticulously debug, log, and selectively execute of code.
For example, a debugger [3] is a heavyweight solution for exploring
fluent code and it forces the data scientist to linearly step through
their code. Printing intermediate results to the console—for exam-
ple, with tidylog [11]—is lightweight but generates noisy output.
Other solutions require newer types of operators to debug fluent
code which might introduce more issues.2 This suggests a need for
easily exploring and understanding fluent code in data science.

To address this need, we introduce Unravel, a tool that enables
structured edits using drag-and-drop and toggle switch interactions
with always-on visualizations to help data scientists explore and
understand fluent code. Unravel is a web application that runs within
the RStudio IDE. Using an interactive code overlay, data scientists
can unravel a chain of fluent code in R to examine intermediate
dataframes, understand the transformations of dataframes along the
chain, and apply simple structural edits without typing. Data sci-
entists can apply structural edits to fluent code by reordering lines
using drag-and-drop, or enabling or disabling lines using toggle
switches. To help data scientists understand each step in fluent code,
function summaries describe the transformations on dataframes and
always-on visualizations are used to highlight important changes to
dataframes. We designed Unravel to help data scientists get clarity on
data transformations, and reduce the burden of typing to manipulate
fluent code.

The contributions of this paper are:

(1) A tool called Unravel that enables structured edits via drag-
and-drop and toggle switch interactions with always-on visu-
alizations to help data scientists explore and understand fluent
code. We discuss the design motivations behind Unravel and
how data scientists can use it to support a variety of tasks.

(2) Through a first-use study with 14 data scientists, we demon-
strate that Unravel complements an IDE workflow, offers an
interactive way to explore fluent code, and supports a variety
of tasks related to understanding and writing data wrangling
code.

2 DEMO OF UNRAVEL
Asha is a data scientist who is familiarizing herself with tidyverse
R, a dialect of R that uses fluent code for data wrangling. Asha is
analysing the babynames dataset [33], which holds popular U.S.
babynames from 1880-2017, and she wants to calculate the percent
of male babynames and the ratio of males to females. She is unfamil-
iar with how grouping works and wants to check her assumptions
regarding the behavior of operations on grouped dataframes. To

1https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-
pipe-chains/14724
2https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-
pipelines-in-r/

(b) Inspecting the line up to select with a dangling %>%.

Figure 2: An example of exploring fluent code in R, which
outputs a dataframe of mean flipper lengths of different
penguin species.

In the “tidyverse” [2] dialect of R, the pipe (%>%) operator forms
the links in the chain of expressions by piping [1] results of function
calls together, shown in Figure 2. In Figure 2a, the penguins variable
containing the dataframe from the Palmer Penguins dataset [16]
gets piped (%>%) or passed to a select function to select columns,
species and flipper_length_mm. The result is piped to the func-
tion group_by function to group the data by the species column
which is finally piped to the summarise function to calculate the
mean of the flipper length (flipper_length_mm) according to each
species and store it in a new column, mfl. Note how the final code
is built up by solving smaller subproblems (selecting, grouping, and
summarising), forming a single large chain. But, what if there is a
problem with the final output?

Although fluent code is designed to be readable and concise,
these advantages come with a cost: isolating problems within a
broken chain becomes a clerical and cumbersome process. Because
fluent code removes intermediate variables, one of its significant
disadvantages arises when the data scientist needs to inspect an
intermediate result. In Figure 2a, a data scientist might be surprised
to find the mean of flipper lengths of the Adelie and Gentoo species
are NAs or “not available.” To hunt for clues, the data scientist is
forced to “unravel” the chain and find the “broken” link (Figure 2b),
where they have to modify and re-execute the code to discover
flipper_length_mm contains missing values, an easy tomiss detail.
To verify the source of NAs, the data scientist had to comment lines,
remove a dangling pipe operator, and execute the code up to the
select function. They can then fix this issue by excluding rows
with NAs for flipper_length_mm could be removed by inserting a
function called drop_na before the select line.

We identified several limitations behind existing solutions to
help data scientists explore fluent code. Prior research has focused
on helping data scientists become more productive by manag-
ing messy code [15], keeping track of versions [18], exploring

alternatives [31] or generating code [10] using programming-by-
example techniques. However, these tools are designed to help
manage entire scripts or notebooks, and do not provide affordances
to easily understand and explore code at a finer-grain level. In the R
community, data scientists have voiced a need to support introspec-
tion and debugging tools for fluent code, with several attempts at
solutions.1 Existing inspection and debugging tools attempt to solve
parts of the problem but fall short in several ways. Current solutions
require a data scientist to meticulously debug, log, and selectively
execute of code. For example, a debugger [3] is a heavyweight so-
lution for exploring fluent code and it forces the data scientist to
linearly step through their code. Printing intermediate results to
the console—for example, with tidylog [11]—is lightweight but
generates noisy output. Other solutions require newer types of op-
erators to debug fluent code which might introduce more issues.2
This suggests a need for easily exploring and understanding fluent
code in data science.

To address this need, we introduce Unravel, a tool that enables
structured edits using drag-and-drop and toggle switch interac-
tions with always-on visualizations to help data scientists explore
and understand fluent code. Unravel is a web application that runs
within the RStudio IDE. Using an interactive code overlay, data
scientists can unravel a chain of fluent code in R to examine inter-
mediate dataframes, understand the transformations of dataframes
along the chain, and apply simple structural edits without typing.
Data scientists can apply structural edits to fluent code by reorder-
ing lines using drag-and-drop, or enabling or disabling lines using
toggle switches. To help data scientists understand each step in
fluent code, function summaries describe the transformations on
dataframes and always-on visualizations are used to highlight im-
portant changes to dataframes. We designed Unravel to help data
scientists get clarity on data transformations, and reduce the burden
of typing to manipulate fluent code.

The contributions of this paper are:
(1) A tool called Unravel that enables structured edits via drag-

and-drop and toggle switch interactions with always-on
visualizations to help data scientists explore and understand
fluent code. We discuss the design motivations behind Un-
ravel and how data scientists can use it to support a variety
of tasks.

(2) Through a first-use study with 14 data scientists, we demon-
strate that Unravel complements an IDE workflow, offers
an interactive way to explore fluent code, and supports a
variety of tasks related to understanding and writing data
wrangling code.

2 DEMO OF UNRAVEL
Asha is a data scientist who is familiarizing herself with tidyverse
R, a dialect of R that uses fluent code for data wrangling. Asha
is analysing the babynames dataset [33], which holds popular U.S.
babynames from 1880-2017, and she wants to calculate the percent
of male babynames and the ratio of males to females. She is unfamil-
iar with how grouping works and wants to check her assumptions

1https://community.rstudio.com/t/whats-currently-the-recommended-way-to-
debug-pipe-chains/14724
2https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-
pipelines-in-r/

https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

) to unravel() the fluent code
and invoke the web application with the code overlay in the Viewer Pane (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

). Then, the user can click on a line to inspect
its output (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

), view information about the dataframe dimensions (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

) and the type of change occurred. To explore the code,
they can reorder (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

) or enable / disable a line using the toggle switches (

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

).

regarding the behavior of operations on grouped dataframes. To
explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
pivot_wider(names_from = sex, values_from = total) %>%
mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

group_by(year, sex) %>%

summarise(total = sum(n)) %>%

pivot_wider(names_from = sex, values_from = total) %>%

mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary,
and output are applied when focusing on a line.

Asha begins her investigation on checking why the final
dataframe was grouped in the final output (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

). Unravel fo-
cuses on the final line with the mutate function automatically, and
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

Asha notices that the

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

and

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

on the code
and the dataframe output are marked as visible changes, but the

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

column is marked as an internal change. She had assumed
summarisewould have removed all group variables (columns) after
calculating the sum of year and sex columns, but a group variable
was kept. Puzzled, Asha investigates the summary of the summarise
line to figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
pivot_wider(names_from = sex,values_from
mutate(percent_male = round(M / (M + F)

babynames %>%

summarise(total = sum(n

pivot_wider(names_from =

mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a tog-
gle switch which automatically re-evaluates the remaining
lines.

https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

The new

UIST ’21, October 10– 14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

The new t o t a l column is marked as a visible change, while
the y e a r has stayed an internal change. To her surprise, Asha
learns from the summary that s u m m a r i s e will drop the last group-
ing variable (s e x), but keeps the rest of the group variables (y e a r).
This explains why she only saw the y e a r column marked as in-
ternal change in the final output. Before moving on, Asha wants
to confirm that s u m m a r i s e works on a grouped dataframe, so she
temporarily disables the g r o u p _ b y line (Figure 5). The s u m m a r i s e
line is automatically focused. Asha glances at the dimensions the
dataframe output which is only one row and column. She confirms
that without g r o u p _ b y , s u m m a r i s e will work on column n of the
entire dataframe.

Summary: Problem with

Input

�������� input ������������

Object ‘M’ not found

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 slice(1) %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

is ��������������������������

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 slice(1) %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

The error occurred in group 1: year = 1880

������������

Figure 6: Clicking the summary box of the line with an error
displays the error message.

Asha now wants to sample the first y e a r and s e x groups. She
adds a line in the editor to select the the first group using a s l i c e
function, placing it before the g r o u p _ b y line. Upon running Unravel
on her new code, she comes across an error (Figure 6). Reading the
summary of the error on m u t a t e line Asha learns that a column for
male is missing. Examining the dataframe dimensions on the s l i c e
and subsequent functions, she realizes she had only selected the first
row of the original dataframe. Asha fixes the issue by reordering the
s l i c e line below the g r o u p _ b y , which automatically updates the
output to return the first row of each y e a r and s e x group (Figure 7).
She also learns that s l i c e will keep the groups y e a r and s e x .

3 RELATED WORK
Unravel builds on prior tools that help data scientists write and
understand code. Our work is closely related to the research on
interactive tools that enable exploratory programming.

Writing code for data science. In computational notebooks, re-
searchers have developed tools that help data scientists write and
modify code. For example, Gather [15] helps analysts find, clean,
recover, and compare versions of code in cluttered, inconsistent
notebooks. While Gather was designed for the notebook as a whole,
our tool helps data scientists manage messes that arise within fine-
grained, fl uent code chains. To explore alternative code in notebooks,
Fork It [31] introduces a technique to fork a notebook and directly
navigate through decision points in a single notebook. We designed
a more lightweight approach to explore code by allowing explo-
ration through interactive overlays and structural edits on the code
itself, for example, by enabling, disabling or reordering lines. To
help data scientists generate data wrangling code, Wrex [10] uses
programming-by-example. Similarly, mage [19] is a tool that helps
users generate code based on the modifications made from inter-
acting with dataframes. Unravel complements tools like Wrex and

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

5

_

276

3

_

138

3

_

138

5

_

1 1880 F Mary 7065 0.07238359

2 1880 M John 9655 0.08154561

3 1881 F Mary 6919 0.0699914

4 1881 M John 8769 0.08098299

5 1882 F Mary 8148 0.07042655

1 2 3 4 5 ... 56 Next1–5 of 276 rows Previous

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 slice(1) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), rati

year sex name n prop

1
2
3
4
5
6

Figure 7: Drag-and-drop can be used to reorder a line, which
automatically re-evaluates code to generate new outputs.

mage by allowing data scientists to understand and iterate on the
machine-synthesized code.

Understanding code for data science. Prior work has explored
tools to help data scientists understand code. For example, Wran-
gler [17] is an interactive tool designed to ease the process of writing
data transformation scripts. Wrangler takes a table-centric approach
where data scientists manipulate the table to produce scripts; our
approach assumes that data scientists are already working with code
and supports their understanding and exploration through it. Lau et al.
[21]’s TweakIt is a system designed to help end-user programmers
collect, understand, and tweak Python code within a spreadsheet
environment. Unravel shares similar design goals such as previewing
outputs on different parts of the code, but it surfaces these capabili-
ties through interactive visual overlays on the fl uent code chains.

Closely related to our current work is Pu et al. [28]’s Datamations
tool for animating dataframe wrangling and visualization pipelines
in R. Datamations automatically animate fl uent code in R using
t i d y v e r s e [2] packages and provides a paired explanation and
visualization of each step in the chain. Our work differs in multiple
respects. First, Datamations provides visualizations of operations
within the chain with summaries on the intention behind each step.
Unravel is designed as an interactive tool that allows direct access
to the intermediates throughout the chain for further inspection and
exploration. While Datamations provide basic visual cues for tabular
animations— such as highlighting a column for different grouping
variables— we provide visual cues for additional information such

column is marked as a visible change, while
the

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10– 14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workfl ow and interface of Unravel. The user writes their code in the editor (A) to u n r a v e l () the fl uent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (% > %) her code to u n r a v e l ()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the m u t a t e function automatically, and Asha no-
tices that the p e r c e n t _ m a l e and r a t i o on the code and the
dataframe output are marked as visible changes, but the y e a r col-
umn is marked as an internal change. She had assumed s u m m a r i s e
would have removed all group variables (columns) after calculating
the sum of y e a r and s e x columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the s u m m a r i s e line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

has stayed an internal change. To her surprise, Asha
learns from the summary that summarise will drop the last group-
ing variable (sex), but keeps the rest of the group variables (year).
This explains why she only saw the year column marked as in-
ternal change in the final output. Before moving on, Asha wants
to confirm that summarise works on a grouped dataframe, so she
temporarily disables the group_by line (Figure 5). The summarise
line is automatically focused. Asha glances at the dimensions the
dataframe output which is only one row and column. She confirms
that without group_by, summarise will work on column n of the
entire dataframe.

Summary: Problem with

Input

!"#$#%&' input (%)*%+#,!$-%

Object ‘M’ not found

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
slice(1) %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
pivot_wider(names_from = sex, values_from = total) %>%
mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

slice(1) %>%

group_by(year, sex) %>%

summarise(total = sum(n)) %>%

pivot_wider(names_from = sex, values_from = total) %>%

mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

is)."+/&01&02324'252677829''

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
slice(1) %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
pivot_wider(names_from = sex, values_from = total) %>%
mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

slice(1) %>%

group_by(year, sex) %>%

summarise(total = sum(n)) %>%

pivot_wider(names_from = sex, values_from = total) %>%

mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

The error occurred in group 1: year = 1880

(%)*%+#,!$-%

Figure 6: Clicking the summary box of the line with an error
displays the error message.

Asha now wants to sample the first year and sex groups. She
adds a line in the editor to select the the first group using a slice
function, placing it before the group_by line. Upon running Unravel
on her new code, she comes across an error (Figure 6). Reading the
summary of the error on mutate line Asha learns that a column for
male is missing. Examining the dataframe dimensions on the slice
and subsequent functions, she realizes she had only selected the first
row of the original dataframe. Asha fixes the issue by reordering the
slice line below the group_by, which automatically updates the
output to return the first row of each year and sex group (Figure 7).
She also learns that slice will keep the groups year and sex.

3 RELATEDWORK
Unravel builds on prior tools that help data scientists write and
understand code. Our work is closely related to the research on
interactive tools that enable exploratory programming.

Writing code for data science. In computational notebooks,
researchers have developed tools that help data scientists write and
modify code. For example, Gather [15] helps analysts find, clean,
recover, and compare versions of code in cluttered, inconsistent
notebooks. While Gather was designed for the notebook as a whole,
our tool helps data scientists manage messes that arise within fine-
grained, fluent code chains. To explore alternative code in note-
books, Fork It [31] introduces a technique to fork a notebook and
directly navigate through decision points in a single notebook. We
designed a more lightweight approach to explore code by allowing
exploration through interactive overlays and structural edits on the
code itself, for example, by enabling, disabling or reordering lines.
To help data scientists generate data wrangling code, Wrex [10]
uses programming-by-example. Similarly, mage [19] is a tool that
helps users generate code based on the modifications made from
interacting with dataframes. Unravel complements tools like Wrex

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

5

_

276

3

_

138

3

_

138

5

_

1 1880 F Mary 7065 0.07238359

2 1880 M John 9655 0.08154561

3 1881 F Mary 6919 0.0699914

4 1881 M John 8769 0.08098299

5 1882 F Mary 8148 0.07042655

1 2 3 4 5 ... 56 Next1–5 of 276 rows Previous

babynames %>%
slice(1) %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
pivot_wider(names_from = sex, values_from = total) %>%
mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

group_by(year, sex) %>%

slice(1) %>%

summarise(total = sum(n)) %>%

pivot_wider(names_from = sex, values_from = total) %>%

mutate(percent_male = round(M / (M + F) * 100, 2), rati

year sex name n prop

1
2
3
4
5
6

Figure 7: Drag-and-drop can be used to reorder a line, which
automatically re-evaluates code to generate new outputs.

and mage by allowing data scientists to understand and iterate on
the machine-synthesized code.

Understanding code for data science. Prior work has ex-
plored tools to help data scientists understand code. For example,
Wrangler [17] is an interactive tool designed to ease the process of
writing data transformation scripts. Wrangler takes a table-centric
approach where data scientists manipulate the table to produce
scripts; our approach assumes that data scientists are already work-
ing with code and supports their understanding and exploration
through it. Lau et al. [21]’s TweakIt is a system designed to help
end-user programmers collect, understand, and tweak Python code
within a spreadsheet environment. Unravel shares similar design
goals such as previewing outputs on different parts of the code, but
it surfaces these capabilities through interactive visual overlays on
the fluent code chains.

Closely related to our current work is Pu et al. [28]’s Datama-
tions tool for animating dataframe wrangling and visualization
pipelines in R. Datamations automatically animate fluent code in R
using tidyverse [2] packages and provides a paired explanation
and visualization of each step in the chain. Our work differs in
multiple respects. First, Datamations provides visualizations of op-
erations within the chain with summaries on the intention behind
each step. Unravel is designed as an interactive tool that allows
direct access to the intermediates throughout the chain for further
inspection and exploration. While Datamations provide basic vi-
sual cues for tabular animations—such as highlighting a column for
different grouping variables—we provide visual cues for additional

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

information such as the intermediate dataframe dimensions, and
the type of change occurred at each step. Lastly, Unravel allows for
exploration within the code, dynamically creating explorable code
upon structural edits, whereas Datamations is focused on providing
animated explanations.

Interactive affordances for code exploration. Researchers
have investigated many useful interactive affordances for code
explorations that we adapt to the data science context. Although
these affordances were designed for different contexts, they are
useful for addressing some of the pain points regarding fluent code.

Always-on visualizations can help data scientists understand
and inspect code and data. Lieber et al. [24] built an IDE tool called
Theseus which provides an always-on visualization to display the
number of API calls made within the editor for JavaScript code.
We adapt this visualization technique for fluent code to display
dataframe properties like its row and column dimensions. Similarly,
“projection boxes” [12, 23] are an always-on visualization technique
for displaying runtime values of Python programs such as the
contents of arrays. This can help minimize context-switches when
writing data wrangling code since it requires constant verification
between code and output. Instead of multiple projection boxes hold
multiple dataframes, we display one dataframe at a time.

Interactive debuggers and steppers are another useful technique
for exploring data wrangling code. For example, Whyline [20] in-
troduced an interrogative debugging interface for asking “why” or
“why not” questions about a program. Whyline visualizes answers
in terms of runtime events connected to the questions. Although
our tool does not directly support asking explicit questions, it can
aid this type of investigation by facilitating inspection of each inter-
mediate dataframe in fluent code for data wrangling. Timelapse [6]
is a tool that helps web developers browse, visualize, and explore
recorded program executions using debugging tools such as break-
points and logging. We record program executions on fluent code
to support investigation of all intermediate dataframes produced in
the chain.

4 SYSTEM DESIGN AND IMPLEMENTATION
Unravel is a tool that is run within the RStudio IDE to support data
scientists introspect and explore fluent code using R. We picked R
because it is widely used in data science, and is a popular language.4
The R language also provides metaprogramming capabilities which
make it convenient for some stages of the implementation such as
parsing and evaluation of intermediate expressions. It is built using
the R Shiny Framework [7] and HTML/CSS/JavaScript.

4.1 Design Motivations
Fluent expressions are used by many programming languages in
data science. For example, LINQ (Language-Integrated Query) is
a fluent interface in C#, typically used as a convenient wrapper—
known as an object-relational mapper (ORM)—around database
query languages like SQL. Languages like Python use the fluent
interface for data analysis code through the pandas library.5 In
the R community, the fluent interface is used in a collection of
R packages called the “tidyverse” [2] to facilitate importing data,

4https://www.tiobe.com/tiobe-index/r/
5https://pandas.pydata.org

wrangling data, computing statistics, manipulating strings, and
modeling data. In the RStudio Community Forums, a popular Q&A
site for R, the tidyverse is the 3rd largest category suggesting users
experience pain points with these packages on a daily basis. Among
the various contexts where fluent code is used, we examined data
wrangling as an important activity to support because it is one of
the most time consuming and difficult aspects of analysis [8, 25].

We examined the R community to identify pain points expressed
by data scientists when understanding and exploring fluent code.
Data scientists have expressed the need for transparency about the
data that they are transforming.6 One data scientist expressed how
“we aren’t good at tracking state,”7 and it’s easy to miss whether or
not a dataframe is grouped, where “working on a grouped [data]
that you forgot is grouped can lead to ‘unexpected’ results.”8 To
inspect issues in fluent code, a traditional debugger can be too
heavyweight for exploring smaller code snippets. The data scientist
also has to linearly progress through their code and cannot openly
explore code at any step. The R community has explored special pipe
operators to debug fluent code, but these can introduce more typing
mistakes and confusion for data scientists by adding more syntax to
remember.9 tidylog [11] is a lightweight solution which prints the
summaries of functions to the console output, but this can generate
noise and it does not save intermediate dataframes for further
inspection. During explorations of the code, data scientists have to
constantly switch between the source editor and the console output
to validate the effect of code on dataframes. This forces context
switches. Altogether, we identified a need for an in-situ tool within
an IDE—such as RStudio—that provides clarity on transformations,
and reduces the burden of typing to manipulate fluent code. To
address these needs, we arrived at the following design goals:

D1. Provide transparency about the dataframe in flu-
ent code. The code and the respective dataframe interme-
diate outputs should be accessible at all times. Users must
be able to click the relevant part of the chain to view its
intermediate dataframe and glean basic information like row
and column dimensions, the types of changes occurred and
a summary about the transformation.
D2. Allow just-in-time explorations of fluent code. To
help data scientists easily perform inspections on fluent code,
they must be able to perform simple structural edits to the
fluent code. Structural edits must instantly update the UI to
easily explore the new intermediate dataframes.
D3. Minimize context-switching to unravel fluent
code. To minimize context-switching, the tool should be
integrated into data scientists’ workflow within the IDE.
Users must be able to input their own code to explore the
chain.

4.2 Implementation
We present the implementation of Unravel by describing the entire
process from invoking the tool to exploring a code snippet in the

6https://community.rstudio.com/t/whats-currently-the-recommended-way-to-
debug-pipe-chains/14724
7https://twitter.com/mjskay/status/1367244873607249922
8https://twitter.com/aosmith16/status/1369689345335070732
9https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-
pipelines-in-r/

https://www.tiobe.com/tiobe-index/r/
https://pandas.pydata.org
https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://twitter.com/mjskay/status/1367244873607249922
https://twitter.com/aosmith16/status/1369689345335070732
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

web application. We discuss our design decisions for all of the
features to support our design goals in Section 4.1.

4.2.1 Code Parsing and Trace Executions. Unravel initially parses
the user’s code (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

) and splits the fluent code into multiple
code snippets that represent each part of the chain. Unravel parses
the code passed to the unravel() function. We make sure to check
the abstract syntax tree (AST) to ensure that the code is fluent
code using the pipe (%>%) operator and that it contains at least one
line of code, a variable (or symbol in R) pointing to the dataframe.
Unravel then splits the fluent code into intermediate expressions
of the chain on the pipe operator. For each expression, we strip the
pipe (%>%) operator at the end of an expression, and store a list of
these expressions to be evaluated in the next step. A challenge we
faced was graceful handling of parsing errors along the chain. We
chose to perform a best effort at parsing syntactically correct lines
and exclude the syntactically incorrect line and subsequent lines.
This simpler implementation relies on the user to fix their code first
instead of skipping to the lines after the error.

Trace executions. To produce the intermediate dataframes, we
iterate through the list of intermediate expressions from the previ-
ous step, and evaluate each expression to create a new list holding
all of the intermediate dataframes. For lines that throw an error,
we store the error message and skip the rest of the lines that may
follow. The message is presented in the function summary tooltip to
give users feedback as they would receive it on the console output.
An alternate implementation could be to skip the line which causes
the runtime error, and keep evaluating the rest of the lines. We
decided to rely on a simpler solution: storing the error message and
displaying it when the user clicks on the summary box (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

)
next to the problematic line so that they can try to fix it. We also
provide toggle switches to disable problematic lines. While tracing
the executions, Unravel extracts and stores its row and column
dimension information, as well as the type of change occurred. As
before, these dataframes and their associated information are stored
in a list for the UI to reference.

Summary generation. Unravel generates summaries using
an extension of tidylog [11], a package that is designed to log
function summaries of tidyverse R code onto the console output.
By loading our extension of tidylog, we override transformation
functions with custom logging functions using the same name and
signature. For example, when the user calls functions like group_by,
we use our own custom group_by function to introspect into the
input dataframe and its arguments. We extended tidylog to cap-
ture summaries of each function instead of printing them to the
console. There are numerous ways one could describe a function’s
effect on a dataframe such as warnings against certain parameters.
However, we decided to focus on three simple pieces of information:
1) Mention the dataframe dimensions and if they have changed,
2) Highlight important column variables, and 3) Provide supple-
mentary information about functions that have subtle changes like
summarise (Figure 4).

4.2.2 Visual Cues. Before interaction is possible, Unravel con-
structs the GUI using information about the chain from previous
steps. To provide transparency about the data and its lineage in

fluent code (D1), Unravel uses the dataframe dimensions, types of
changes, and function summaries to create visual cues. We first
describe the design of the visual affordances below.

Data change schema. To help data scientists pay attention to
subtle changes, we designed a simple data change schema which
visualizes different types of changes . We analyze the difference
between the incoming and the resulting dataframe when a trans-
formation function is called. Different colors are used highlight
changes within the summary box, code and the dataframe output.
“No changes” indicates no changes occurred after an operation.
“Visible Changes” indicates the dataframe was transformed (e.g.
creating new columns, mutating existing columns). The “Internal
Changes” indicates the dataframe has been marked as a grouped
by variables or by rows, and there is no visible effect. Although an
“Error” is not an explicit change, it indicates a runtime error.

Code, summary, and dataframe highlights. To help data sci-
entists keep track of dataframes and their properties, Unravel high-
lights the code, function summaries, and the dataframes using the
data change schema described above. We drew inspiration of this
design by Wayne [30]’s strategy to use run-time information to
highlight parts of the code. There are lots of properties one could
access from a dataframe during runtime, such as the number of miss-
ing values, but we decided to highlight column variables of interest
in the code, output, and function summary (Figure 4). For a partic-
ular line, Unravel compares the previous and the new dataframe
to highlight column names if they were transformed, or used as a
group variable. Unravel also highlights text related to the changed
column variables within the function summary text. Finally, the
output dataframe column(s) is also highlighted accordingly.

Always-on visual cues for data transparency. To achieve
our design goal of providing transparency (D1) about the dataframe,
Unravel uses always-on visualizations. Data scientists have to con-
tinually track properties about dataframes which can be cognitively
demanding, especially in complex data wrangling code composed
of many operations. TensorSensor [27] approaches the problem by
improving the quality of exception messages around data dimen-
sions, a particularly difficult task for novices. We were also inspired
by Lieber et al. [24]’s always-on visualizations which tracked the
number of api calls for web applications to help prevent misconcep-
tions among students. Unravel’s always-on visualizations consists
of a summary box next to each line which displays the dataframe’s
row and column dimensions (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

) and a color to indicate
the type of change according to the data change schema. Visual
diffs—a display of the differences between lines of code—could have
been used to illustrate differences between two dataframes. How-
ever, data scientists might not always be interested in checking
the change between operations and a diff visualization might be
too disorienting. We decided on a simpler design to show a high-
level snapshot state of intermediate dataframes in terms of relevant
columns that were added or changed.

4.2.3 Fluent Code Interactions. Unravel constructs the GUI by in-
corporating the dataframe information captured by evaluating inter-
mediate expressions from the previous steps. We also link commu-
nication between R and JavaScript to respond to user interactions.
Once the setup is complete, users can start inspecting the fluent

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

code or apply structural code edits for exploration. Below, we dis-
cuss the design behind the structural drag-and-drop and toggle
switch interactions to achieve D2.

Fluent code overlay. To help data scientists interact with flu-
ent code, Unravel creates a web application within RStudio which
overlays the code with a UI (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

). Lerner [23] used the idea
of live projection boxes—presenting runtime values in boxes as the
user types—for live programming to keep track of changes in data
types like lists and arrays. We considered adopting this idea for
data wrangling with fluent code, but typing can be cumbersome
and the continual visual updates could become distracting. To help
data scientists focus, we designed Unravel as an exploration mode
for data scientists to inspect and explore fluent code in isolation.
Therefore, Unravel is presented in a separate window but within the
IDE. Unlike projection boxes, Unravel only shows one dataframe at
a time for a particular line in the fluent code. Information about the
intermediate lines of code and their respective dataframes are used
to populate and update UI elements on the fluent code overlay for
displaying dataframe dimensions and types of changes occurred.

Structural edits via drag-and-drop and toggle switch in-
teractions. To help data scientists easily edit fluent code, Unravel
provides drag-and-drop to reorder lines and toggle switches to
enable/disable them. The order of operations (lines) is important
in fluent code because a dataframe is transformed by functions
in sequence along the chain. Drag-and-drop interactions on code
has been used previously to help users refactor or change code,
and fix bugs [4, 22] We use drag-and-drop to explore the effects
of function order. Using the move icon (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

), a line can be
dragged before or after another line. Upon dropping a line, Unravel
automatically evaluates the code to produce new dataframes to
explore. Unravel will also handle trailing pipe (%>%) operators for
the last enabled line in the new code overlay. Another structural
edit we implemented was enabling or disabling a line using toggle
switches (Figure 3

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

year F M percent_male ratio

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 2 3 4 5 ... 28 Next

FED

Figure 3: The workflow and interface of Unravel. The user writes their code in the editor (A) to unravel() the fluent code and
invoke the web application with the code overlay in the Viewer Pane (B). Then, the user can click on a line to inspect its output (C),
view information about the dataframe dimensions (D) and the type of change occurred. To explore the code, they can reorder (E)
or enable / disable a line using the toggle switches (F).

explore her code snippet, Asha pipes (%>%) her code to unravel()
which opens up Unravel in RStudio’s Viewer Pane.3

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

!"#$ %"&'

()*+,-../(&(/0),1.(&(20(to

(working on group variables:

created one variable 343#5 via %6789:

Keep in mind, the data is internally grouped by

%677#$;%"

)%677#$;%"

!"#$

Figure 4: Visual highlights on the code, function summary, and
output are applied when focusing on a line.

Asha begins her investigation on checking why the final dataframe
was grouped in the final output (Figure 3 C). Unravel focuses on
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

the final line with the mutate function automatically, and Asha no-
tices that the percent_male and ratio on the code and the
dataframe output are marked as visible changes, but the year col-
umn is marked as an internal change. She had assumed summarise
would have removed all group variables (columns) after calculating
the sum of year and sex columns, but a group variable was kept.
Puzzled, Asha investigates the summary of the summarise line to
figure out how it handles group variables (Figure 4).

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5: A line can be enabled or disabled using a toggle switch
which automatically re-evaluates the remaining lines.

). We use toggle switches as another structural
edit to help data scientists examine the effects behind the presence
or absence of certain functions. Although a simple edit, this can be
useful for isolating the exploration on certain lines of the chain, or
disabling problematic lines temporarily.

4.3 System Scope and Limitations
We limited the scope of our tool in order to explore the usefulness
of interactive exploration of fluent code. Here, we briefly describe
the scope and limitations of Unravel.

Supported code. We scoped our tool to focus on single-table
data wrangling functions in the dplyr [34] and tidyr [35] data
wrangling packages that use the fluent interface. Certain non-fluent
code like variables storing dataframes and other similar data types
like lists could benefit from always-on visualizations. However, we
chose to limit Unravel to fluent code since it is a prevalent pattern
of coding in R. For highlights on code, Unravel is limited to simple
function parameter values representing column names. One chal-
lenge with highlighting columns on the code snippet is that some
functions can have parameters that also accept a function as its
value. We chose to scope our tool to initially handle the simpler
parameter values. In a future version, Unravel could handle arbi-
trary nesting of expressions to isolate column variables in code by

analyzing the AST further. Finally, the output of an operation in
fluent code could produce other types of data besides dataframes.
However, we only support dataframes as outputs because data wran-
gling typically involves transformations of dataframes. Unravel can
be extended to render other types of data to enable explorations on
complex code.

Evaluation limitations. Unravel does not attempt to sanitize a
valid fluent code for side-effect functions, guarantee deterministic
outputs, or optimize for performance. Some functions in both base
R and tidyverse R cause side effects instead of returning values.
Unravel is not currently aware of such functions, which could cause
unexpected results. Using our evaluation strategy to generate the
intermediate outputs, if a line within the chain contains a function
that generates random numbers (e.g. runif), we currently generate
new numbers for each subsequent operation. This can be an unex-
pected result if programmers make use of such functions. Lastly,
we did not optimize Unravel to handle large dataframes and opted
to use smaller datasets for the study. Hence, Unravel will become
sluggish once dataframes become too large and we would need to
paginate the results in a more efficient way.

5 EVALUATION: FIRST-USE STUDY
To evaluate the usefulness of Unravel, we conducted a first-use
study with 14 data scientists, with varied levels of experience. On a
5-point Likert scale, participants self-reported their experience in
data science (µ = 3.6), data wrangling (µ = 3.7), R (µ = 3.7), and the
fluent interface (µ = 4).

5.1 Methods
We conducted the studies over video conference using an online
version of Unravel. We began each study by describing the tasks
to participants. The tasks used built-in R datasets like mtcars and
iris, some open datasets like diamonds (included in the ggplot2
package [32]), babynames [33], and gapminder [5], as well as one
hand-crafted dataset called student_grades. The participants were
tasked with exploring several code snippets written in the tidyverse
R dialect using the dplyr and tidyr packages. The code snippets
were chosen to tease out how users would discover and explore
prototypical types of data wrangling tasks like selecting, filtering,
mutating, grouping, and summarising dataframes.

For each code snippet, the task began open-ended where partici-
pants could explore each code snippet with Unravel then focused
on specific tasks tailored to each snippet. We wanted participants
to start using Unravel with open-ended exploration to capture their
initial interactions with the tool. We then focused on specific tasks
related to probing certain lines, and performing actions like tog-
gling lines on or off, reordering lines, and asking them to observe
the effect of the functions on the dataframe. Finally, we also asked
participants to explore their own code in the RStudio IDE to gauge
how well Unravel could be integrated into their daily workflows.
While interacting with the tool, we asked participants to think
aloud and ask questions. After the completion of the study, we
administered an exit survey to measure the usefulness of Unravel
features, and to ask for additional feedback from participants.

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

5.2 Post-study Survey Results
On 5-point Likert scale, participants positively rated the usefulness
of Unravel overall (µ = 4.6). Participants found the clickable lines for
viewing intermediate dataframes (µ = 4.6) and toggle switches for
enabling or disabling lines (µ = 4.6) were the most useful features.
Similarly, the participants positively rated the usefulness of the
summary boxes for viewing the dimensions and data change type
(µ = 4.4), and drag and drop for reordering lines (µ = 4.3). How-
ever, there were less positive ratings for the usefulness of the data
change color schema for visual highlights on code and dataframe
outputs (µ = 4.1), and function summary tooltips (µ = 3.9). 93% of
the participants responded that they would likely use Unravel to
debug fluent code, while 79% of the participants responded that
they would use it to understand fluent code.

5.3 Qualitative Results
We present our qualitative results from the user study, describing
the interactions we observed, and the feedback participants pro-
vided throughout the tasks. The results of our first-use study suggest
that Unravel addresses the design goals we formulated in Section 4.1.
Participants found that Unravel provided transparency about the
data (D1), allowed just-in-time exploration (D2), and minimized
context switches between code and data (D3). In this section, we
discuss our study results through the context of our design goals.

5.3.1 Visual Cues Helped Achieve Data Transparency. Participants
relied on the visual cues to track transformations of a dataframe
across the chain (D1). Summary boxes provided a useful visual
cue for the basic properties of dataframe. Participants like P5, P6,
P14, or P1 used the summary box dimensions to infer changes
like adding columns or stripping rows from certain operations like
filter or summarise. For example, P14 found that “it was very
useful to have this at a glance information about the data shape
and type of change at times because it supports quickly checking if
the dataframes are correct.” Upon discovering the row and column
dimensions of the summary box, P5 thought “that feature of rows
and columns numbers is I think one of the most powerful teaching
things. It’s really cool to see mutate is adding this column.” The
data change schema highlights were used by the participants to
validate changes to the dataframe between steps. P4 expressed,
“I like that you can flip between lines pretty quickly to see what
changed, you have something that guides your attention. Being
able to step through it and being able to walk through like look
at this, look at that!” P5, a data science educator, commented how
the internal change would be useful for teaching students about
the behavior of grouped data: “I really like being able to show this
internal change. This color scheme is really nice. Because I think
students, even after you tell them they should expect it, they miss
it.”

5.3.2 Explorations on the Code and Data Enabled Checking Assump-
tions. Overall, we were able to achieve D2. Participants clicked on
different parts of the chain, and explored the code using the drag-
and-drop and the toggle switches to validate their assumptions
about the code and output. We found that being able to click on
arbitrary lines of the fluent code was helpful for data scientists to
inspect intermediate dataframes without being constrained to a

linear stepping interaction like debuggers. The toggle switches to
enable or disable lines helped participants explore the influence
of certain functions when used with other functions. For example,
P2 expressed that “it’s cool how it helps dispel goofy assumptions
about what attribute persists versus not. It made me examine so
many assumptions especially grouping.” Participants like P12, P8,
P4 or P10 tested hypotheses about the code behavior by applying
structural edits to the fluent code like disabling lines or reorder-
ing them. When examining the role of a group_by function for
example, P10 guessed that “if you don’t group by species then that
would just work on the entire dataset.” P10 then toggled off the
group_by line and confirmed “when you summarise the total now,
it’s applying this function across everyone in the dataset.”

Participants explored and made use of the summary text to un-
derstand operations with visible but subtle changes. Some R experts
(P4, P2, P6) found that toggling lines on or off especially useful for
understanding pivoting operations: “being able to quickly flip be-
tween lines after toggling things on or off is nice for these pivot
wider or longer functions.” (P4). P2 found the summary text was
useful for confirming their own summaries they made mentally: “I
really like the pivot summary description because it can be difficult
to visualize the pivot operations.” Sometimes, order effects were
explored by participants. For example, P6 was able to validate the
importance of placing a function like filter line before running a
summary function on the dataframe by reordering lines. Using the
summary descriptions of row changes they confirmed the behavior:
“There are rows outside of mass that are also being dropped. This
makes sense because I missed the hair color column, so that’s where
I’m getting my counts of 28 versus 33 rows. This is interesting to
be able to check your assumptions of getting the outputs.”

5.3.3 Unravel Helped Minimize Context Switches Between Code and
Output. Participants found the integration of Unravel into their
IDE workflow to be useful. All participants commented that it
was quite convenient that they could simply pipe (%>%) their own
fluent code in R into the unravel function to open up the tool in
RStudio (D3). Upon unraveling a complex tidyverse code snippet
P4 commented, “Oh wow, it actually worked! I like how you pipe it
in at the end and it gives you this awesome thing.” However, other
participants wanted tighter correspondence between the text editor
and the explorable code. For example, P3 expected the structural
edits on the text editor to automatically update the code overlay
and suggested adding it as a feature since “it’s so handy to not
have to manually run from editor.” Other participants (P4, P6, P9,
P11) tried to edit the code on the interactive code overlay itself,
suggesting a need for live updates to the editor to further reduce
context switches, especially if they want to copy the edited code.

6 DISCUSSION AND FUTUREWORK
In this section, we discuss the broad implications of our findings
and identify the ways in which Unravel could be adapted to various
programming languages and contexts.

6.1 Unraveling Code in Educational Settings
One common thread from our study was the excitement around
using Unravel as an educational tool. Data science educators make
use of computational notebooks, which students use to engage

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

with content, code, and interactive elements like widgets or videos.
These interactive documents enrich the learning experience by
allowing learners to explore and understand code. P5 wanted to
use Unravel as a teaching tool to author exercises in the spirit of
Parson’s Problems [9], asking students fix problematic fluent code
using the structured drag-and-drop interactions. P9 commented
that Unravel would have helped their tutoring sessions within the
IDE because “it would’ve been really useful to walk through steps
of how it starts getting data to how it ends.” In a future version,
Unravel could be used within interactive tutorials to explore code in
RMarkdown using the learnr package [29] or extended for Jupyter
Notebooks.

6.2 Data Scientists Can Benefit From in-Situ
Learning Tools

Instead of offloading to external learning resources, we should pro-
vide learning tools within the IDE or computational notebook. Data
scientists can avoid context switches by using in-situ tools to gen-
erate code [10, 19], version code [18], or manage messy code [15].
Unravel builds on this approach by offering an exploration mode for
fluent code within the IDE. An interesting application of Unravel is
to help data scientists understand code generated by programming
by example techniques. Ferdowsifard et al. [12]’s study of a live
programming tool for python found that “programmers do not try
to understand the code generated by the synthesizer.” To encourage
programmers to understand, tweak, and trust synthesized code, pro-
viding a means to explore code interactively with descriptions of
operations might be useful. The data scientists in our study found it
useful to use Unravel within the IDE because they could understand
and explore their own code. However, some participants wanted
live updates between the code in text editor and the explorable code
overlay. In the future version, Unravel could incorporate elements
of live programming techniques, syncing the structural edits to the
original code. Based on our participants’ focused behavior using
Unravel, we believe that constant updates of dataframes during
typing could be too distracting, so there should be a careful balance
between liveliness and focused explorations.

6.3 Unravel in Other Programming Contexts
and Environments

Unravel can be adapted to other programming languages and
contexts to help understand and explore fluent code. Language-
Integrated Query (LINQ)10 is a domain-specific language in C#
that is used to query from various data sources such as relational
databases (SQL). LINQ uses the fluent interface to filter on data:

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

drag-and-drop interactions. P9 commented that Unravel would have
helped their tutoring sessions within the IDE because “it would’ve
been really useful to walk through steps of how it starts getting data
to how it ends.” In a future version, Unravel could be used within
interactive tutorials to explore code in RMarkdown using the learnr
package [29] or extended for Jupyter Notebooks.

6.2 Data Scientists Can Benefit From in-Situ
Learning Tools

Instead of offloading to external learning resources, we should pro-
vide learning tools within the IDE or computational notebook. Data
scientists can avoid context switches by using in-situ tools to gen-
erate code [10, 19], version code [18], or manage messy code [15].
Unravel builds on this approach by offering an exploration mode for
fluent code within the IDE. An interesting application of Unravel is
to help data scientists understand code generated by programming
by example techniques. Ferdowsifard et al. [12]’s study of a live
programming tool for python found that “programmers do not try
to understand the code generated by the synthesizer.” To encourage
programmers to understand, tweak, and trust synthesized code, pro-
viding a means to explore code interactively with descriptions of
operations might be useful. The data scientists in our study found it
useful to use Unravel within the IDE because they could understand
and explore their own code. However, some participants wanted
live updates between the code in text editor and the explorable code
overlay. In the future version, Unravel could incorporate elements
of live programming techniques, syncing the structural edits to the
original code. Based on our participants’ focused behavior using
Unravel, we believe that constant updates of dataframes during typ-
ing could be too distracting, so there should be a careful balance
between liveliness and focused explorations.

6.3 Unravel in Other Programming Contexts and
Environments

Unravel can be adapted to other programming languages and con-
texts to help understand and explore fluent code. Language-Inte-
grated Query (LINQ)10 is a domain-specific language in C# that is
used to query from various data sources such as relational databases
(SQL). LINQ uses the fluent interface to filter on data:
List<int> numbers = new List<int>() {5, 4, 1, 3, 9, 8, 6,

7, 2, 0};↪→

var orderingQuery = numbers
.Where(num => num < 3 || num > 7)
.OrderBy(n => n);

Structured explorations on LINQ queries can help C# program-
mers inspect and debug the chain by allowing them to inspect each
intermediate result, and explore variations with drag-and-drop or tog-
gle interactions. Similarly, Python uses fluent code through method
chaining to wrangle data using the pandas library:
df[['fl_date', 'tail_num', 'dep_time', 'dep_delay']]

.dropna()

.sort_values('dep_time')

Since each method returns a dataframe, we can analyse the code
and split on method calls to store the intermediate dataframe for

10https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

each operation ([[, dropna, and sort_values). Python program-
mers can then rely on the same visual cues to display dataframe
dimensions and types of changes occurred, as well as explore the
code via structural edits. Fluent code is also used in data processing
frameworks like Spark11, which is used for handling big data. Spark
provides wrappers for many languages including Python and R. Pro-
grammers using Spark can use a tool like Unravel for interactively
exploring fluent code that handles much larger data. Scaling Unravel
to handle big data will require an effective way to summarise and vi-
sualize data transformations. Here, it might be useful to use Niederer
et al. [26]’s strategy behind TACO, an interactive comparison tool
that visualizes the differences between multiple tables at various
levels of detail. Instead of showing the entire table of each step, it
might be useful to initially provide an overview of data changes in
terms of row and column differences, before selecting a particular
dataframe to get more details.

7 CONCLUSION
We explored the usefulness of Unravel, a tool that enables struc-
tured edits via drag-and-drop and toggle switch interactions with
always-on visualizations to help data scientists explore and under-
stand fluent code. Through examination of the R community, we
identified several needs related to exploring fluent code. To address
those needs, we designed Unravel which integrates within data sci-
entists’ IDE, helps them gain transparency about data, and explore
fluent code using simple structural edits like reordering and enabling
or disabling lines. Through a first-use study with 14 data scientists,
we found that Unravel facilitated diverse activities such as validating
assumptions about the code or data, finding redundant or equivalent
code, and learning about function behavior. Based on our results, we
discussed some ways to generalize Unravel to other programming
languages and contexts and identified future work to better support
interactive exploration of fluent code.

8 ACKNOWLEDGMENTS
This material is based in part upon work supported by the National
Science Foundation under Grant No. 2006947.

REFERENCES
[1] [n.d.]. Pipe. https://magrittr.tidyverse.org/reference/pipe.html
[2] [n.d.]. Tidyverse. https://www.tidyverse.org
[3] Stefan Milton Bache and Hadley Wickham. 2014. magrittr: A Forward-Pipe

Operator for R. https://CRAN.R-project.org/package=magrittr R package version
1.5.

[4] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to enable
design space exploration. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 211–221.

[5] Jennifer Bryan. [n.d.]. gapminder: Data from Gapminder.
https://github.com/jennybc/gapminder, http://www.gapminder.org/data/,
https://doi.org/10.5281/zenodo.594018.

[6] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
record/replay for web application debugging. In Proceedings of the 26th Annual
ACM Symposium on User Unterface Software and Technology. 473–484.

[7] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui
Xie, Jeff Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges. 2021.
shiny: Web Application Framework for R. https://shiny.rstudio.com/ R package
version 1.6.0.9000.

[8] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and
Data Cleaning. Vol. 479. John Wiley & Sons.

11https://spark.apache.org

Structured explorations on LINQ queries can help C# program-
mers inspect and debug the chain by allowing them to inspect each
intermediate result, and explore variations with drag-and-drop
10https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/
linq/

or toggle interactions. Similarly, Python uses fluent code through
method chaining to wrangle data using the pandas library:

Unravel: A Fluent Code Explorer for Data Wrangling UIST ’21, October 10–14, 2021, Virtual Event, USA

drag-and-drop interactions. P9 commented that Unravel would have
helped their tutoring sessions within the IDE because “it would’ve
been really useful to walk through steps of how it starts getting data
to how it ends.” In a future version, Unravel could be used within
interactive tutorials to explore code in RMarkdown using the learnr
package [29] or extended for Jupyter Notebooks.

6.2 Data Scientists Can Benefit From in-Situ
Learning Tools

Instead of offloading to external learning resources, we should pro-
vide learning tools within the IDE or computational notebook. Data
scientists can avoid context switches by using in-situ tools to gen-
erate code [10, 19], version code [18], or manage messy code [15].
Unravel builds on this approach by offering an exploration mode for
fluent code within the IDE. An interesting application of Unravel is
to help data scientists understand code generated by programming
by example techniques. Ferdowsifard et al. [12]’s study of a live
programming tool for python found that “programmers do not try
to understand the code generated by the synthesizer.” To encourage
programmers to understand, tweak, and trust synthesized code, pro-
viding a means to explore code interactively with descriptions of
operations might be useful. The data scientists in our study found it
useful to use Unravel within the IDE because they could understand
and explore their own code. However, some participants wanted
live updates between the code in text editor and the explorable code
overlay. In the future version, Unravel could incorporate elements
of live programming techniques, syncing the structural edits to the
original code. Based on our participants’ focused behavior using
Unravel, we believe that constant updates of dataframes during typ-
ing could be too distracting, so there should be a careful balance
between liveliness and focused explorations.

6.3 Unravel in Other Programming Contexts and
Environments

Unravel can be adapted to other programming languages and con-
texts to help understand and explore fluent code. Language-Inte-
grated Query (LINQ)10 is a domain-specific language in C# that is
used to query from various data sources such as relational databases
(SQL). LINQ uses the fluent interface to filter on data:
List<int> numbers = new List<int>() {5, 4, 1, 3, 9, 8, 6,

7, 2, 0};↪→

var orderingQuery = numbers
.Where(num => num < 3 || num > 7)
.OrderBy(n => n);

Structured explorations on LINQ queries can help C# program-
mers inspect and debug the chain by allowing them to inspect each
intermediate result, and explore variations with drag-and-drop or tog-
gle interactions. Similarly, Python uses fluent code through method
chaining to wrangle data using the pandas library:
df[['fl_date', 'tail_num', 'dep_time', 'dep_delay']]

.dropna()

.sort_values('dep_time')

Since each method returns a dataframe, we can analyse the code
and split on method calls to store the intermediate dataframe for

10https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

each operation ([[, dropna, and sort_values). Python program-
mers can then rely on the same visual cues to display dataframe
dimensions and types of changes occurred, as well as explore the
code via structural edits. Fluent code is also used in data processing
frameworks like Spark11, which is used for handling big data. Spark
provides wrappers for many languages including Python and R. Pro-
grammers using Spark can use a tool like Unravel for interactively
exploring fluent code that handles much larger data. Scaling Unravel
to handle big data will require an effective way to summarise and vi-
sualize data transformations. Here, it might be useful to use Niederer
et al. [26]’s strategy behind TACO, an interactive comparison tool
that visualizes the differences between multiple tables at various
levels of detail. Instead of showing the entire table of each step, it
might be useful to initially provide an overview of data changes in
terms of row and column differences, before selecting a particular
dataframe to get more details.

7 CONCLUSION
We explored the usefulness of Unravel, a tool that enables struc-
tured edits via drag-and-drop and toggle switch interactions with
always-on visualizations to help data scientists explore and under-
stand fluent code. Through examination of the R community, we
identified several needs related to exploring fluent code. To address
those needs, we designed Unravel which integrates within data sci-
entists’ IDE, helps them gain transparency about data, and explore
fluent code using simple structural edits like reordering and enabling
or disabling lines. Through a first-use study with 14 data scientists,
we found that Unravel facilitated diverse activities such as validating
assumptions about the code or data, finding redundant or equivalent
code, and learning about function behavior. Based on our results, we
discussed some ways to generalize Unravel to other programming
languages and contexts and identified future work to better support
interactive exploration of fluent code.

8 ACKNOWLEDGMENTS
This material is based in part upon work supported by the National
Science Foundation under Grant No. 2006947.

REFERENCES
[1] [n.d.]. Pipe. https://magrittr.tidyverse.org/reference/pipe.html
[2] [n.d.]. Tidyverse. https://www.tidyverse.org
[3] Stefan Milton Bache and Hadley Wickham. 2014. magrittr: A Forward-Pipe

Operator for R. https://CRAN.R-project.org/package=magrittr R package version
1.5.

[4] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to enable
design space exploration. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 211–221.

[5] Jennifer Bryan. [n.d.]. gapminder: Data from Gapminder.
https://github.com/jennybc/gapminder, http://www.gapminder.org/data/,
https://doi.org/10.5281/zenodo.594018.

[6] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
record/replay for web application debugging. In Proceedings of the 26th Annual
ACM Symposium on User Unterface Software and Technology. 473–484.

[7] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui
Xie, Jeff Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges. 2021.
shiny: Web Application Framework for R. https://shiny.rstudio.com/ R package
version 1.6.0.9000.

[8] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and
Data Cleaning. Vol. 479. John Wiley & Sons.

11https://spark.apache.org

Since each method returns a dataframe, we can analyse the code
and split on method calls to store the intermediate dataframe for
each operation ([[, dropna, and sort_values). Python program-
mers can then rely on the same visual cues to display dataframe
dimensions and types of changes occurred, as well as explore the
code via structural edits. Fluent code is also used in data process-
ing frameworks like Spark11, which is used for handling big data.
Spark provides wrappers for many languages including Python
and R. Programmers using Spark can use a tool like Unravel for
interactively exploring fluent code that handles much larger data.
Scaling Unravel to handle big data will require an effective way
to summarise and visualize data transformations. Here, it might
be useful to use Niederer et al. [26]’s strategy behind TACO, an
interactive comparison tool that visualizes the differences between
multiple tables at various levels of detail. Instead of showing the
entire table of each step, it might be useful to initially provide an
overview of data changes in terms of row and column differences,
before selecting a particular dataframe to get more details.

7 CONCLUSION
We explored the usefulness of Unravel, a tool that enables structured
edits via drag-and-drop and toggle switch interactions with always-
on visualizations to help data scientists explore and understand
fluent code. Through examination of the R community, we identified
several needs related to exploring fluent code. To address those
needs, we designed Unravel which integrates within data scientists’
IDE, helps them gain transparency about data, and explore fluent
code using simple structural edits like reordering and enabling or
disabling lines. Through a first-use study with 14 data scientists, we
found that Unravel facilitated diverse activities such as validating
assumptions about the code or data, finding redundant or equivalent
code, and learning about function behavior. Based on our results, we
discussed some ways to generalize Unravel to other programming
languages and contexts and identified future work to better support
interactive exploration of fluent code.

ACKNOWLEDGMENTS
This material is based in part upon work supported by the National
Science Foundation under Grant No. 2006947.

REFERENCES
[1] [n.d.]. Pipe. https://magrittr.tidyverse.org/reference/pipe.html
[2] [n.d.]. Tidyverse. https://www.tidyverse.org
[3] Stefan Milton Bache and Hadley Wickham. 2014. magrittr: A Forward-Pipe

Operator for R. https://CRAN.R-project.org/package=magrittr R package version
1.5.

[4] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to en-
able design space exploration. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 211–221.

11https://spark.apache.org

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://magrittr.tidyverse.org/reference/pipe.html
https://www.tidyverse.org
https://CRAN.R-project.org/package=magrittr
https://spark.apache.org

UIST ’21, October 10–14, 2021, Virtual Event, USA Nischal Shrestha, Titus Barik, and Chris Parnin

[5] Jennifer Bryan. [n.d.]. gapminder: Data from Gapminder.
https://github.com/jennybc/gapminder, http://www.gapminder.org/data/,
https://doi.org/10.5281/zenodo.594018.

[6] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
record/replay for web application debugging. In Proceedings of the 26th Annual
ACM Symposium on User Unterface Software and Technology. 473–484.

[7] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie,
Jeff Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges. 2021. shiny:
Web Application Framework for R. https://shiny.rstudio.com/ R package version
1.6.0.9000.

[8] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and
Data Cleaning. Vol. 479. John Wiley & Sons.

[9] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the Fourth International Workshop
on Computing Education Research. 113–124.

[10] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A unified programming-by-example interaction for synthesizing readable
code for data scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[11] Benjamin Elbers. 2021. tidylog: Logging for ’dplyr’ and ’tidyr’ Functions. https:
//github.com/elbersb/tidylog/ R package version 1.0.2.9000.

[12] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-Step live programming by example. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
614–626.

[13] Martin Fowler. 2010. Domain-specific Languages. Pearson Education.
[14] Martin Fowler and E Evans. 2005. Fluent interface. martinfowler.com (2005).
[15] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.

2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[16] Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. 2020. palmer-
penguins: Palmer Archipelago (Antarctica) penguin data. https://doi.org/10.5281/
zenodo.3960218 R package version 0.1.0.

[17] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 3363–3372.

[18] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Support-
ing exploratory programming by data scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. 1265–1276.

[19] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graph-
ical work in computational notebooks. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. 140–151.

[20] Amy J Ko and Brad A Myers. 2004. Designing the Whyline: A debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. 151–158.
[21] Sam Lau, Sruti Srinivasa Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait

Sarkar. 2021. TweakIt: Supporting end-user programmers who transmogrify
code. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 1–12.

[22] Yun Young Lee, Nicholas Chen, and Ralph E Johnson. 2013. Drag-and-drop refac-
toring: Intuitive and efficient program transformation. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 23–32.

[23] Sorin Lerner. 2020. Projection boxes: On-the-fly reconfigurable visualization for
live programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–7.

[24] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2481–2490.

[25] Michael Muller, Ingrid Lange, DakuoWang, David Piorkowski, Jason Tsay, Q Vera
Liao, Casey Dugan, and Thomas Erickson. 2019. How data science workers work
with data: Discovery, capture, curation, design, creation. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–15.

[26] Christina Niederer, Holger Stitz, Reem Hourieh, Florian Grassinger, Wolfgang
Aigner, and Marc Streit. 2017. TACO: Visualizing changes in tables over time.
IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 677–686.

[27] Terrence Parr. [n.d.]. Clarifying exceptions and visualizing tensor operations in
deep learning code. https://explained.ai/tensor-sensor/index.html

[28] Xiaoying Pu, Sean Kross, Jake M Hofman, and Daniel G Goldstein. 2021. Data-
mations: Animated explanations of data analysis pipelines. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–14.

[29] Barret Schloerke, JJ Allaire, Barbara Borges, and Garrick Aden-Buie. 2021.
learnr: Interactive Tutorials for R. https://rstudio.github.io/learnr/,
https://github.com/rstudio/learnr.

[30] Hillel Wayne. [n.d.]. Syntax highlighting is a waste of an information chan-
nel. https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-
waste-of-an-information/

[31] Nathaniel Weinman, Steven M Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting stateful alternatives in computational notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[32] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. https://ggplot2.tidyverse.org

[33] Hadley Wickham. 2019. babynames: US Baby Names 1880-2017. https://CRAN.R-
project.org/package=babynames R package version 1.0.0.

[34] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller. 2021. dplyr:
A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr
R package version 1.0.4.

[35] Hadley Wickham and Lionel Henry. 2019. tidyr: Tidy Messy Data. https://CRAN.
R-project.org/package=tidyr R package version 1.0.0.

https://shiny.rstudio.com/
https://github.com/elbersb/tidylog/
https://github.com/elbersb/tidylog/
https://doi.org/10.5281/zenodo.3960218
https://doi.org/10.5281/zenodo.3960218
https://explained.ai/tensor-sensor/index.html
https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-waste-of-an-information/
https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-waste-of-an-information/
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=babynames
https://CRAN.R-project.org/package=babynames
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

	Abstract
	1 Introduction
	2 Demo of Unravel
	3 Related Work
	4 System Design and Implementation
	4.1 Design Motivations
	4.2 Implementation
	4.3 System Scope and Limitations

	5 Evaluation: First-Use Study
	5.1 Methods
	5.2 Post-study Survey Results
	5.3 Qualitative Results

	6 Discussion and Future Work
	6.1 Unraveling Code in Educational Settings
	6.2 Data Scientists Can Benefit From in-Situ Learning Tools
	6.3 Unravel in Other Programming Contexts and Environments

	7 Conclusion
	Acknowledgments
	References

