
ABSTRACT

SHRESTHA, NISCHAL. Supporting Just-In-Time Learning for Data Science Programming. (Under
the direction of Christopher Parnin.)

Data science programming presents many challenges for programmers entering the field.

Roughly, data science programming can be broken up into several activities: data wrangling, analysis,

modeling, or visualization. Data wrangling is an important first step that involves cleaning and

shaping tabular data—or dataframes—into a form amenable for conducting analysis. However,

data wrangling code is challenging because it involves learning a plethora of data transformation

operations and how they can be composed together to shape the data. Data wrangling code requires

tracking and understanding numerous data transformation techniques, and it is a tedious and

error-prone process. Prior work has mainly focused on tools that help end users and programmers

wrangle data by providing better management of code in computational notebooks or through GUI

tools that attempt to remove the need to program. However, there is a gap in the literature and

existing tools to support programmers in understanding, exploring, and debugging data wrangling

code interactively and flexibly. The thesis of this dissertation is: Programmers can understand,

explore, and debug data wrangling code flexibly when aided by just-in-time learning tools that

accommodate multiple learning objectives.

The goal of this research is to help programmers understand, explore, and debug data wrangling

code by exploring two just-in-time learning tools. The first study provided evidence that program-

mers heavily rely on opportunistic learning strategies, which involves using quicker resources and

learning topics as needed. We also found that learning a language involves adapting to an entire

ecosystem which includes libraries, tools, and the community. In the second study, we investigated

how an online community of practice can help data scientists in the R community through a social

coding project called #TidyTuesday on Twitter. We found that an online community of practice

provides motivation, dissemination of knowledge, and adoption of best practices. A community of

practice is a just-in-time learning tool that provides programmers flexibility on what they want to

learn by browsing, adapting, and extending others’ code. To help programmers understand and

explore data wrangling code, we built Unralve, another just-in-time learning tool for the RStu-

dio IDE (Interactive Development Environment) that presents visual cues and summaries of data

transformations, and enables exploration via simple structured editing of the code. In a formative

study, we found that Unravel provides diverse learning activities such as discovering code behavior,

relationships between functions, and exploring code alternatives. To help programmers learn about

and debug problems in data wrangling code effectively, we extended Unravel to highlight problems

about the code and data through always-on visualizations and and automate data quality checks.

© Copyright 2022 by Nischal Shrestha

All Rights Reserved

Supporting Just-In-Time Learning for Data Science Programming

by
Nischal Shrestha

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2022

APPROVED BY:

Kathryn Stolee Tiffany Barnes

Shiyan Jiang Rob DeLine

Christopher Parnin
Chair of Advisory Committee

DEDICATION

I dedicate this dissertation to my mother, my father, and my brother. None of this would have been

possible without their love and support in all of my endeavors.

ii

BIOGRAPHY

Nischal Shrestha was born in Kathmandu, Nepal in 1992. He immigrated with his family to Chapel

Hill, North Carolina, USA in 2002. Nischal went to elementary through high school in Chapel Hill.

Before college, he knew he wanted to do something in engineering so he applied to North Carolina

State University (NCSU).

He studied his undergraduate at NCSU from 2011-2015 earning his Bachelor of Science in

computer science. Nischal then interned at WillowTree Apps before he started graduate school at

the same University. This experienced piqued his interest in software engineering research.

In graduate school, Nischal was interested in issues related to both software engineering (SE)

and human-computer interaction (HCI). As he waded through the first and second year, his interest

grew towards issues related to learning programming languages. He joined the Alt-Code lab to work

on this topic under the guidance of Dr. Chris Parnin. There, Nischal learned how to conduct SE

research with a flavor of HCI and published a few papers around data science programming and

discover ways to help programmers wrangle data more effectively. Nischal eventually interned at

RStudio during his 5th year, which shaped his thoughts and the tools he used for the last two projects

for the dissertation.

Beyond work, Nischal has always maintained an interest in music and powerlifting. Although he

has not yet competed professionally, he can be seen hoisting some barbells and weights at the gym.

Nischal also enjoys both listening to and making music through guitar, bass and through Sonic Pi

on the computer.

iii

ACKNOWLEDGEMENTS

In the last several years as I worked on my PhD, I have been blessed with a lot of peers, colleagues,

mentors, and friends who have helped me throughout my journey.

First, I would like to thank Chris Parnin for his support regarding my research and career devel-

opment. Chris has always helped me push past barriers, move fast, and continually develop both

academic and industry-relevant skills. This work would not have been possible without Chris.

I want to thank some great mentors and colleagues I have had the privilege of working with. I

want to thank Titus for guiding me on research writing, collaborating with me on most of my research

projects, and just being a great colleague to work with throughout the years. I would also like to

thank Denae who I always looked up to as inspiration of conducting human-computer interaction

research, and who always provided guidance on all things career related. Additional thanks to the rest

of the Alt-Code lab. Thank you Eric, Mahnaz, and Samim who have always provided me with great

feedback on my work, encouraged me when I felt overwhelmed, and being there for me throughout

the pandemic. The Software Engineering lab was in many ways the perfect space for me to grow

as a PhD student so I want to thank the following peers who have helped me along the way: Justin

Smith and Justin Middleton, Chris Brown, Gina, Kai, and George. Finally, I want to also thank Greg

Wilson and Alison Hill who both provided helpful advice and ideas on my research, and who also

shaped my career along the way as I waded into the data science world.

Lastly, I have made some amazing friends along the way that have helped me in many different

ways. First, thank you Huy Tu for being a great friend, keeping me in check with work-life “balance”,

introducing me to Vietnamese food, and making grad school more fun by inviting me to all the

festivities. Thank you to my “beer hang” troupe, who I could commiserate with while enjoying some

beers: Andrew, Kenneth, Adam, Justin, Nick, Shrikanth and Fogo. I want to also thank some friends I

met from other universities like Katie, Rebecca, and Mariam who have been supportive in all of my

research endeavors. Finally, I want to thank some of my fellow RStudio interns: Thank you Daniel,

Maya, and Simon for nerding out about R with me and helping me with my research.

I want to also thank some of my non-PhD friends who have supported me over the years. Thank

you Mylo, I probably couldn’t have endured all of the harder points of my journey without your

never-ending support and friendship, as well as the “wild boyzzz”, Opti, Bravo, and Sarge. I also

want to thank Henry, Noel, and Carlos for encouraging me to keep going when things felt slow.

Funding

This material is based in part upon work supported by the National Science Foundation under Grant Nos.

1559593, 1755762, 1814798, and 2006947.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Thesis . 1

Chapter 2 Introduction . 2

Chapter 3 Challenges related to learning programming languages 4
3.1 Motivating Example . 5
3.2 Methodology . 5

3.2.1 Research Questions . 5
3.2.2 Phase I: Study Design for Stack Overflow . 6
3.2.3 Phase II: Study Design for Interviews with Professional Programmers 7

3.3 Results . 8
3.3.1 RQ1: Does cross-language interference occur? . 8
3.3.2 RQ2: How do experienced programmers learn new languages? 11
3.3.3 RQ3: What do experienced programmers find confusing in new languages? . . 12

3.4 Limitations . 16
3.5 Related Work . 16
3.6 Discussion and Design Implications . 18
3.7 Conclusion . 21

Chapter 4 An online community of practice for data scientists . 23
4.1 Motivation . 23
4.2 Related Work . 25

4.2.1 Communities of Practice . 25
4.2.2 Data Scientists . 27
4.2.3 The R Community . 28
4.2.4 Hashtag Movements on Twitter . 29

4.3 Method . 29
4.3.1 Research Setting: #TidyTuesday . 30
4.3.2 Research Questions . 32
4.3.3 Interviews . 32
4.3.4 Analysis . 34

4.4 Results . 35
4.4.1 Who participates in Tidy Tuesday and what are their motivations and goals? . 35
4.4.2 What do participants gain by participating in Tidy Tuesday? 40
4.4.3 How does social activity around Tidy Tuesday cultivate a community of practice? 43

4.5 Discussion . 48
4.5.1 Lowering the barriers to entry . 48
4.5.2 Better mechanisms for practice and learning . 49
4.5.3 Organically growing an online learning CoP . 51

4.6 Limitations . 53
4.7 Conclusion . 54

v

Chapter 5 Interactive exploration of
data science code . 56

5.1 Motivation . 56
5.2 Introduction . 57
5.3 Related Work . 61
5.4 System Design and Implementation . 63

5.4.1 Design Motivations . 63
5.4.2 Implementation . 65
5.4.3 System Scope and Limitations . 67

5.5 Evaluation: First-Use Study . 68
5.5.1 Methods . 68
5.5.2 Post-study Survey Results . 69
5.5.3 Qualitative Results . 69
5.5.4 Unravel Helped Minimize Context Switches Between Code and Output 70

5.6 Discussion and Future Work . 71
5.7 Conclusion . 72

Chapter 6 Debugging
data science code . 73

6.1 Motivation . 74
6.2 Related Work . 76

6.2.1 Formative Interviews and Design Goals . 77
6.3 Design and Implementation . 78

6.3.1 Exploration Mechanics . 79
6.3.2 Code Overlay . 80
6.3.3 Function Help . 80
6.3.4 Interactive Tables . 81
6.3.5 Data Details . 82

6.4 User Study . 83
6.5 Method . 84

6.5.1 Recruitment . 84
6.5.2 Study Setup . 84
6.5.3 Debugging Tasks . 85
6.5.4 Analysis . 86

6.6 Results . 87
6.6.1 Post-study Survey Results . 88
6.6.2 RQ1: Does Unravel help data scientists explore and understand data wran-

gling code for exploratory analysis? . 88
6.6.3 RQ2: How does Unravel help them identify data quality issues and debug

data wrangling code? . 92
6.7 Discussion and Future Work . 94

6.7.1 Better Support for Novice Data Scientists . 94
6.7.2 Live Programming for Data Wrangling . 94
6.7.3 Exploring and Highlighting Data Quality Issues . 95
6.7.4 Limitations . 96

6.8 Conclusion . 97

Chapter 7 Conclusion . 98

vi

7.1 Future Work . 99

BIBLIOGRAPHY .100

vii

LIST OF TABLES

Table 3.1 Participants interviewed . 7
Table 3.2 Posts by Programming Language Pair . 9
Table 3.3 Learning Strategies and Language Interference Themes 22

Table 4.1 Demographics of interviewees . 33
Table 4.2 High level themes influencing participation . 36
Table 4.3 High level themes on the impact of #TidyTuesday . 40
Table 4.4 High level themes on community building . 44

Table 6.1 Demographic information and task completion results. The cells are marked
with a 3 to indicate they successfully completed the tasks (Section 6.5.3)
by fixing all the code and data mistakes. The indicates that they were
not able to start or complete the task. Wrangling and R Exp. are the
participants’ self-ratings for data wrangling and R experience using a
likert scale of 1-5 (Novice to Expert). We used the average of data wran-
gling and R skill ratings to bucket beginners (2–3.5) and experienced
(above 3.5) to facilitate analysis of the user study. 86

Table 6.2 Post-Study Survey Responses . 87

viii

LIST OF FIGURES

Figure 4.1 Cumulative growth of unique #TidyTuesday users and tweets from April,
2018 to Jan, 2020. 30

Figure 4.2 An example of a #TidyTuesday submission tweet and feedback. 31
Figure 4.3 Number of #TidyTuesday tweets each day of the week from April, 2018 to

Jan, 2020. 38
Figure 4.4 An example of Thomas welcoming a newcomer to #TidyTuesday. 47
Figure 4.5 An example of constructive criticism on a #TidyTuesday submission tweet. . 51

Figure 5.1 Unravel is a tool that helps data scientists understand and explore fluent
code via structured edits using drag-and-drop and toggle switch interac-
tions. The data scientist unravels fluent code to get access to intermediate
outputs for each line. They can then inspect a particular line of code and
its respective output. Data scientists can explore the code using drag-and-
drop to reorder lines, and toggle switches to enable or disable lines and
automatically produce new outputs to investigate. 57

Figure 5.2 An example of exploring fluent code in R, which outputs a dataframe of
mean flipper lengths of different penguin species. 58

Figure 5.3 The workflow and interface of Unravel. 60
Figure 5.4 Visual highlights on the code, function summary, and output are applied

when focusing on a line. 60
Figure 5.5 A line can be disabled using the toggle switch which automatically re-evaluates

the remaining lines. 61
Figure 5.6 Clicking the summary box of the line with an error displays the error message. 61
Figure 5.7 Drag-and-drop can be used to reorder a line, which automatically re-evaluates

code to generate new outputs. 62

Figure 6.1 Data scientists can use Unravel to explore, understand and debug data
wrangling code and data. Users can unravel code and interactively explore
it on the Code Overlay (A). Users can click on hyperlinked functions to open
the Help documentation page for the function (B). The Data Details tab
displays an overview of each column of the dataframe at a particular line
with the column (variable) name, its type, the number of unique elements, a
missing versus not missing bar, a histogram and potential problems (C). To
examine more details for each column, the user can then click on the carat
icon to display more statistics and potential issues (D). 75

Figure 6.2 A user can examine extra details about the column for the dataframe at
each line displaying a type-specific statistic such as a count table (A), and
potential issues (B) for the type such as miscoded NAs like “-” for categorical
columns. 79

Figure 6.3 The columns referenced in the Code Overlay can now be referenced in
arbitrarily nested expressions, making sure to highlight the changed or new
columns. 80

Figure 6.4 A user can click on a hyperlinked function to open its documentation in the
Help pane. 81

ix

Figure 6.5 Users can search for particular cell values within the Table output (A), rele-
vant columns within the Data Details table (B), and expanded detail tables
for a column which is useful for categorical variables (C). 82

Figure 6.6 Users can take a glance at the number of groups for a grouping variable. . . . 83
Figure 6.7 Users can examine summary statistics about a particular column when

expanding its row, and be aware of potential issues This an example of
details for a numeric type. 83

Figure 6.8 Number of times participants executed code in RStudio or used Unravel to
explore code. 88

Figure 6.9 Number of times participants clicked on the intermediate lines in the Code
Overlay. 89

Figure 6.10 The count of Function Help clicks and the corresponding functions sorted
by highest to lowest count. 90

Figure 6.11 Number of times participants are focusing at the output Table and the Data
Details. 91

x

CHAPTER

1

THESIS

Data wrangling is an important step in data science programming that requires data to be trans-

formed into a form amenable for analysis. However, data wrangling is a time-consuming and

error-prone process that requires a programmer to learn and correctly apply numerous data trans-

formation techniques. Programmers can understand, explore, and debug data wrangling code

flexibly when aided by just-in-time learning tools that accommodate multiple learning objectives.

1

CHAPTER

2

INTRODUCTION

People across a wide range of professions now write code as part of their jobs with the purpose of

obtaining insights from data rather than building software. The popular term for this type of work is

“data science” and the group of people are often called “data scientists”. Data scientists come from

various backgrounds like engineering, business, design, and research [Dav12]. They are increasingly

prevalent in both industry and academic settings. In industry, data scientists work in numerous

sectors like public policy, technology, and healthcare [Loh17]. In academia, data scientists are

graduate students, professors and technical staff writing code to make research discoveries [Guo12].

Data scientists are known to be like end-user programmers, writing code as a means to an end—to

gain insight into data. Unlike traditional programmers, they are also a group that heavily engages in

exploratory programming [Ker17c]. In particular, data scientists heavily engage in exploratory data

analysis where they continually explore questions about the data and iteratively refine statistical

models and visualizations to paint a story. However, data scientists also share similarities with

software engineers, writing reusable analysis code to share with others. Ko et al. [Ko11] calls this

end-user software engineering.

Despite the growth of data science, there is little understanding of how data scientists are learning

and practicing their skills. Prior work has given insight on the activities data scientists engage in

at work [Guo12; Kan12; Ker17c; Kim16; Rul18; Seg07], and how practitioners teach beginners in

both industry and academia [Kro19]. There are also a few studies examining how data scientists

hone several skills such as acquiring, cleaning, wrangling, visualizing, and presenting data [Har15;

Kan12]. To gain expertise in these skills, data scientists must decide between formal and informal

learning paths: data scientists could acquire a data science major [Tre17; Van18] versus taking

MOOCs (massive open online courses), or participate in hands-on workshops [Wil06] and coding

2

bootcamps [Top; Cam20]. Although there is a trend towards lighter, and informal online learning—

such as interactive tutorials [RSt20]—there is a lack of research on how to help data scientists learn

programming as they work with the tool for writing code like their IDE (Integrated Development

Environment).

Among the various activities in data science programming, data wrangling presents an imme-

diate barrier for those entering the field. Data wrangling [Guo11; Kan11; Rat17; Sut18] has been

described as requiring up to 80% of the time and effort in a data science project [Goe3; Kan11;

Rat17]. “Dirty data” was the most commonly-reported challenge in the 2017 Kaggle survey [Kag17]

and the 2020 Kaggle survey reports that “most data scientists continue to learn outside of formal

education” [Kag20]. As Sutton et al. note, the problem can be exacerbated with large datasets which

often present multiple problems, leading to “death by a thousand wranglings” [Sut18]. Martin reports

that data science workers tend to spend less time doing analyses, and more time preparing their

data: “Weeks or months is a realistic timeframe. Hours is not.” [Mar18]. Engaging with data takes a

lot of time and effort.

To help data scientists, this dissertation builds on existing tools and techniques to support

data scientists understand, explore, and debug data wrangling code through just-in-time learning

solutions. Given the exploratory nature of data science programming [Ker17b] and the trend towards

informal, opportunistic learning strategies [Bra09], this work offers solutions that help data scientists

as they engage with data. Prior work has largely focused on building tools that help data scientists

write and manage code in computational notebooks, which is a popular coding environment that

allows a mix of code, narrative, and other media like visualizations. For example, Gather [Hea19]helps

analysts find, clean, recover, and compare versions of code in cluttered, inconsistent notebooks. For

data wrangling, Wrangler [Kan11] is an example of an interactive tool designed to ease the process

of writing data transformation scripts. However, there is a lack of tooling to help data scientists

understand and explore code and its behavior. This work aims to support data scientists by helping

them more easily gain insights into code behavior as they wrangle their data for analysis.

3

CHAPTER

3

CHALLENGES RELATED TO LEARNING

PROGRAMMING LANGUAGES

Peter Norvig wrote a guide, “Python for Lisp Programmers” [Nor00], to teach Python from the

perspective of Lisp. We interviewed Peter regarding this transition and he described a few challenging

aspects of switching to Python such as how lists are not treated as a linked list and solutions where he

previously used macros required re-thinking. When asked about the general problem of switching

programming languages, he said, “Most research is on beginners learning languages. For experts,

it’s quite different and we don’t know that process. We just sort of assume if you’re an expert you

don’t need any help. But I think that’s not true!” Peter believes that learning new languages is

difficult—even for experts—despite their previous experience working with languages. Is Peter

right?

In this chapter, we investigate this question through an empirical study of Stack Overflow ques-

tions across 18 different programming languages and semi-structured interviews with professional

programmers [Shr20] to further examine the diversity of challenges they face when learning new

programming languages. We hypothesized that previous knowledge could potentially interfere

with learning a new programming language. From our inspection of 450 Stack Overflow questions,

we found 276 instances of interference that occurred due to faulty assumptions originating from

knowledge about a different language. To understand why these difficulties occurred, we conducted

semi-structured interviews with 16 professional programmers. The interviews revealed that pro-

grammers make failed attempts to relate a new programming language with what they already know.

Our findings inform design implications for technical authors, toolsmiths, and language designers,

4

such as designing documentation and automated tools that reduce interference, anticipating un-

common language transitions during language design, and welcoming programmers not just into a

language, but its entire ecosystem.

3.1 Motivating Example

In psychology and neuroscience, studies have shown that confusion can occur when older informa-

tion interacts with newer information [Und57; Jon98; Pos04a; Pos04b; Bad05; Jon06]. To illustrate,

suppose the bread aisle of your favorite store was recently moved. You may reflexively start walking

towards the old location due to interference—when previous knowledge disrupts recall of newly

learned information. However, if you recently saw that the impossible burger was added to the

frozen section (and not a separate health aisle), using knowledge that frozen food can be found in

the frozen section is an example of facilitation [Aue17]—when previous knowledge helps retrieval of

new information. In the same vein, when a Java programmer is learning Kotlin, we postulate that

their prior Java knowledge either facilitates or interferes with learning. The knowledge that Java is

objected-oriented and uses static typing facilitates their learning as Kotlin shares similar properties.

The knowledge that Java classes are not final by default interferes with their learning because

Kotlin classes are final by default.

Hypothesis: If previous programming knowledge can be framed as a source of interference

with new programming language acquisition, interference theory can explain why programming

language learning can be difficult for experienced programmers. And when previous programming

knowledge isn’t relevant, learning can also be difficult because this knowledge doesn’t facilitate.

3.2 Methodology

To investigate our hypothesis, we first looked for evidence that programmers could have difficulty

learning another language due to interference from their previous knowledge. To this end, we

conducted an empirical study examining questions posted on a popular question-and-answer site,

Stack Overflow.1 We analyzed 450 posts for 18 different programming languages and qualitatively

coded each post, characterizing posts in terms of whether or not programmers made incorrect

assumptions based on their previous programming knowledge. Then, to understand what learning

strategies programmers used when learning another language—and why previous knowledge could

interfere with this process—we interviewed 16 professional programmers who had recently switched

to a new programming language. We do so through the following research questions:

3.2.1 Research Questions

• RQ1: Does cross-language interference occur? We examined questions programmers had

about programming languages on Stack Overflow for evidence of interference with previous

1https://www.stackoverflow.com

5

https://www.stackoverflow.com

programming knowledge.

• RQ2: How do experienced programmers learn new languages? To gain a better understand-

ing of why cross-language interference occurs, we interviewed professional programmers on

how they learn new languages.

• RQ3: What do experienced programmers find confusing in new languages? To examine

the ways in which programmers mix a new language with their previous knowledge, we

asked programmers about obstacles they faced, and surprises they encountered in their new

languages.

3.2.2 Phase I: Study Design for Stack Overflow

To answer RQ1, we conducted a study using Stack Overflow posts.

3.2.2.0.1 Data collection

To gather Stack Overflow questions, we used the SOTorrent [Bal18] data source from the 2019

MSR Mining Challenge. We queried 26 programming languages used previously by Erik [Ber17]

and Waren [Lon17] in their investigation of popular language migrations, based on Google search

keywords and Github repositories. We gathered Stack Overflow questions for each <language
A, language B> pair. To keep the analysis tractable [Mas10], we considered only the association

between the two languages, and not the direction of the possible interference. We used a stop-rule

criteria to cover over 95% of total posts, which resulted in 15 out of the 26 language pairs shown

in Table 3.2. The materials for the study are available online.2

3.2.2.0.2 Query criteria

We used BigQuery3 to query the SOTorrent database and used the following filtering criteria to

capture potential posts where the programmers are asking questions about a new language (target)

coming from a previous language (source):

1. The question is tagged with both languages, or

2. The question is tagged with the source language but contains the text of the target language

in the title or body, vice-versa.

3.2.2.0.3 Analysis

To understand whether or not cross-language interference occurs, we performed a manual inspec-

tion of Stack Overflow posts (Table 3.2). We inspected a random sample of 30 posts for each pair

to keep categorization tractable, as done in Barik et al. [Bar18a]. We manually excluded posts that

2https://go.ncsu.edu/cross-lang-study
3https://cloud.google.com/bigquery/

6

https://go.ncsu.edu/cross-lang-study
https://cloud.google.com/bigquery/

Table 3.1 Participants interviewed

ID Exp1 Domain Recent Transition
P1 15 Compilers C#⇒ Python⇒ C++
P2 9 Data Science Python⇒ Julia
P3 18 Information Sciences Python⇒ PHP
P4 15 Neuroscience R⇒ Python
P5 10 Security C++⇒ TypeScript
P6 20 Cloud Services C#⇒ TypeScript
P7 6 Cloud Services C#⇒ Python
P8 10 Web Platform C#⇒ JavaScript
P9 31 Data Science C#⇒ JavaScript⇒ Scala
P10 8 Business Applications C#⇒ Rust
P11 12 Web Platform C#⇒ Ruby
P12 10 Data Science Python⇒ SAS
P13 6 Software Engineering C++⇒ JavaScript
P14 10 Data Science R⇒ Python
P15 20 Software Engineering C#⇒ Swift
P16 5 Data Science R⇒ Python

1 Years of self-reported programming experience.

did not make any explicit connection between the languages of each pair, sampling another ran-

dom post to replace it as necessary. Because the inclusion and exclusion criteria can have multiple

interpretations, the first two coauthors labelled a random sample of 30 posts. This labelling had

100% agreement between the coauthors, and suggests a clear understanding of how to categorize

posts. The two coauthors proceeded to label the rest of the Stack Overflow posts using the following

classifications:

• Correct: The post makes a connection to a previous programming language with correct

assumptions regarding the target language as revealed by the accepted answer, or

• Incorrect: The post makes a connection to a previous programming language with incorrect

assumptions regarding the target language as revealed by the accepted answer.

Next, we calculated inter-rater reliability (IRR) between the two coauthors (Cohen’s κ = 0.89),

and obtained “substantial” agreement [Lan77]. We discussed disagreements on whether a post was

correct or incorrect: if there was still disagreement, it was reconciled by the first author. Finally, we

calculated the percentage of correct and incorrect posts. We used instances of correct and incorrect

assumptions as evidence of cross-language interference and facilitation.

3.2.3 Phase II: Study Design for Interviews with Professional Programmers

To answer RQ2 and RQ3, we conducted semi-structured interviews with professional programmers.

7

3.2.3.0.1 Participants

We used purposive sampling [Ton07] to recruit 16 professional programmers who were learning a

new programming language within the past 6 months (Table 4.1); these participants were still early

in their learning process and working through their initial stumbling blocks in the new language.

The participants (12 male, 4 female, self-reported) were from large software, technology, and data

analytics companies with years of programming experience ranging from 5 to 31 years (µ= 12.8,

s d = 6.6). There were a total of 14 unique language transitions. Before the interview, participants

completed a background questionnaire asking them about their previous languages and an obstacle

they have experienced while adapting to the new language.

3.2.3.0.2 Protocol

We conducted semi-structured interviews either on-site or remotely, within 60 minute time blocks.

Two of the authors conducted and recorded the interviews separately. All sessions were conducted

with a single observer and a single programmer. We used the following structure for questions: 1)

participant background, 2) first steps, 3) obstacles, 4) learning process, and 5) general strategies. The

background information from the questionnaire was used to tailor the questions for the participants.

The semi-structured interview format allowed the flexibility to ask questions impromptu and dig

deeper into more specific obstacles. The recordings were later transcribed by the first author for

analysis.

3.2.3.0.3 Analysis

RQ2: How do experienced programmers learn new languages? To answer RQ2, we conducted in-

ductive thematic analysis [Bra19] on the interview transcripts over multiple phases: transcribing

interviews, generating open codes by labelling notable recurring statements made by the partici-

pants, identifying relationships between the codes, and organizing them into meaningful themes.

RQ3: What do experienced programmers find confusing in new languages? To understand how

programmers confuse language concepts, we selected themes from our analysis that highlighted

interference due to previous programming knowledge.

3.3 Results

3.3.1 RQ1: Does cross-language interference occur?

Cross-language interference occurs on Stack Overflow across various language pairs. We found a total

of 276 instances of incorrect assumptions (Table 3.2), which is around 61% of the 450 posts inspected.

There were a total of 174 posts with correctly stated assumptions, which is only around 39% of the

total posts. It’s important to note that this provides evidence of interference occurring but does

not imply programmers have incorrect assumptions 61% of the time. The <Kotlin, Java> pair

8

Table 3.2 Posts by Programming Language Pair

Correct4

Language Pair1 Posts2 % Accepted3 n %

<C, C++> 30863 65% 9 30%
<C#, Visual Basic> 11522 62% 8 27%
<Objective-C, Swift> 9416 50% 10 33%
<Python, C++> 6763 51% 15 50%
<Java, C#> 6748 59% 16 53%
<Scala, Java> 6622 55% 8 27%
<PHP, Java> 6152 46% 16 53%
<R, Python> 2824 49% 12 40%
<Kotlin, Java> 2565 53% 6 20%
<Matlab, Python> 2407 53% 11 37%
<Node, PHP> 2077 40% 14 47%
<Ruby, Python> 1314 65% 14 47%
<Perl, Python> 1152 67% 13 43%
<Lua, C++> 1143 63% 12 40%
<Clojure, Java> 1098 68% 10 33%

1 The pair of programming languages.
2 Total number of questions where the two languages are tagged or referenced in body.
3 Percentage of questions that have accepted answers.
4 Total posts (out of 30) classified as having correct assumptions formed from prior language knowledge.

had the highest number of posts with incorrect assumptions, which reflects the Java programmer’s

confusion mentioned in ??. The next two pairs, <C#, Visual Basic> and <Scala, Java>, also

contained a high number of incorrect assumptions. However, there were other pairs like <Python,
C++>, <Java, C#>, and <PHP, Java>, which had a more even distribution of posts with correct

and incorrect assumptions; this suggests easier transitions between the languages. While reviewing

the 450 Stack Overflow posts, we encountered instances where programming languages behaved in

surprising ways for programmers. We highlight three examples, two of which involved interference

between syntax and concepts, and one which involved facilitation—making it easier to use type

inference.

Interference: R⇒ Python4

s An R programmer is now using Python and its data processing library, Pandas. They are unable

to successfully relate their previous knowledge about subsetting, in R, to Python: “I’m seriously

confused. Maybe I’m thinking too much in R terms and can’t wrap my head around what’s going

on in Python.”

They present the R expression they want to translate, as well as several attempted translations

in Python:

R
data[data$x > value, y] <- 1
Python

9

data['y'][data['x'] > value] = 1

Several concepts in R interfered, but we will highlight the most significant: Python prevents

assignment to copies of dataframes. In this case, the indexing operation data[‘y’] returns a

copy of the dataframe and setting the value with [data[‘y’] > value] = 1 will not work

as the R programmer expects. The knowledge that the equivalent R expression will set the value

of 1 without any warnings interferes with Python’s warning.

Interference: PHP⇒ JavaScript5

A PHP programmer who has switched to programming in JavaScript asks how to store transient

information (sessions), such as application state about a user. Typically, PHP uses server-side

session variables ($_SESSION) for this purpose. While related concepts, such as local storage

and browser-based sessions exist, the programmer is warned that sessions cannot be safely and

securely stored directly on the client—the programmer’s knowledge about server-side sessions

leads to a faulty assumption about their applicability in other programming contexts.

Facilitation: Java⇒Kotlin6

A Java developer is learning Kotlin. They ask if the following Kotlin expression can be simplified:

val boundsBuilder: LatLngBounds.Builder = LatLngBounds.Builder()

The developer suspects their declaration is more verbose than it should be, given their knowl-

edge of local variable type inference in Java. They assume the declaration can be simplified:

val boundsBuilder = LatLngBounds.Builder()

This is an example of facilitation—the accepted answer confirms that the developer can

simplify the expression because Kotlin supports type inference, allowing for the explicit type

declaration to be removed.

These examples illustrate how previous knowledge of language syntax and concepts interact

with knowledge learned in a new language. In some cases, this results in interference, which harms

a programmer’s ability to grasp new syntax and concepts in the new language. In other cases,

this results in facilitation, which helps programmers make meaningful connections to previous

languages and helps them learn the new language.

4https://stackoverflow.com/questions/30923882
5https://stackoverflow.com/questions/47137666
6https://stackoverflow.com/questions/38131655/

10

https://stackoverflow.com/questions/30923882
https://stackoverflow.com/questions/47137666
https://stackoverflow.com/questions/38131655/

Cross-language interference occurs across various language transitions on Stack Overflow posts.

We found that 61% of the 450 posts contained incorrect assumptions about the target language,

and only 39% contained correct assumptions.

3.3.2 RQ2: How do experienced programmers learn new languages?

We present the themes on how experienced programmers learn new languages. A summary of the

themes is listed in Table 3.3.

3.3.2.1 Programmers learned languages on their own

Programmers who switched teams lacked formal training for the new language and its associated

technology stack, leaving learning to themselves. For example, when P1 switched from C# to Python

for a new project, there wasn’t any training involved and the on-boarding process was, “hey we

want to get exposed to the Python world, go get started!” Although some programmers were given

training initially on the project, “realistically for learning the new language [they]were pretty much

on [their] own” (P7). This forced programmers to watch “language tutorial videos on Pluralsight”7

(P5) or read online documentation. Some programmers “got initial tips from some folks from the

team on what’s what” (P6), and when running into complex issues “reached out to the group and

said has somebody else hit this before?” (P1).

3.3.2.2 Just-in-time learning is a dominant strategy

To learn new languages, every programmer we interviewed used just-in-time learning [Bra09], an

opportunistic strategy focused on only learning features as needed. Given time constraints, pro-

grammers made use of immediately available resources like online documentation, video tutorials,

online searches, and available experts. Traditional resources like programming language books were

only used as a reference, since programmers “just don’t have time to do that” (P5). Programmers

were primarily concerned with completing tasks in a reasonable time and “figuring out how to not

burn tons of time on a single problem” (P1). Quicker resources, like cheat sheets, were preferred for

language transitions. For example, the first thing P2 did was to make use of cheat sheets [Qua17] to

help them transition from Python to Julia. P15 was also a fan of cheat sheets:

It seems like if you were going from one framework to another, from one technology stack

to another—even if you’re not going from A to B, you’re just starting off on B—there’s

probably a content cheat sheet that every dev needs to know. (P15)

3.3.2.3 Programmers related the new language to previous languages

To help accelerate the learning process, programmers generally tried to relate the new language to

their previous languages. Programmers started by “loosely taking ideas from working in another

7https://www.pluralsight.com

11

https://www.pluralsight.com

language” (P14) or looking at existing code because “it’s already probably been written and it’s out

there somewhere or at least something close to it” (P1). While this learning strategy was useful for

bootstrapping, some programmers started from scratch. For example, when moving from C# to

Ruby, P11 described “trying to be very conservative and mindful and trying not to map anything

over, but just treating everything as something brand new.” Similarly, P12 explained that they did

not try to map things from Python when learning SAS “mostly because the syntax was so new that

every time [they] tried to do anything, [they]would have to go and google the syntax.” P10 expressed

a similar problem when learning about managing memory in Rust after years of using C#: “there

wasn’t a clean way for me to just get there. I had to go and learn that stuff from scratch.” These

examples illustrate that programmers typically reuse knowledge—if possible—but sometimes avoid

doing so when it’s more troublesome.

Programmers use an opportunistic learning strategy, relating syntax and concepts of the new

language with their previous language. This offers expediency but causes interference when

major differences exist between the two languages.

3.3.3 RQ3: What do experienced programmers find confusing in new languages?

We present the themes explaining how programmers confuse language concepts. A summary of

these themes is listed in Table 3.3.

3.3.3.1 Old habits die hard

Programmers had to constantly suppress old habits acquired from previous languages. For example,

P3—who was used to Python—had trouble adapting to block delimiters in PHP, where “it’s near-

impossible to figure out exactly which opening brace you’re closing once your HTML/PHP gets to

any complexity at all.” Similarly, P15 realized that “in Swift, the open curly bracket needs to be on the

initial line of the method declaration and if you put it on the next line the method may not execute

in an expected fashion.” There were minor but frustrating difference like 0 versus 1 indexing for

lists in languages such as Python and R. P4 described their frustration in “typing a[1] thinking that

it’s a[0], and then wasting 5 minutes like a complete fool not understanding why nothing makes

sense” (P4). Programmers are able to resolve these small differences, but it still causes interference

at the onset of learning a new language.

3.3.3.2 Mindshifts are required when switching paradigms

Some language transitions required fundamental shifts in mindsets, or “mindshifts” [Arm07]. For

example, when P2 transitioned from Python to Julia, they were constantly trying to make an object

and realizing that “there’s no objects, there’s only structs!” With Julia, they needed to write more

functional code, a shift from the object-oriented programming that they were used to in Python: “it

was just needing to shift that and realize I’m never gonna write ‘something-dot-something-else’ ever

12

or rarely.” For P10, they had to completely rethink the problems they would have normally solved in

C# because of Rust’s unique ownership feature for memory safety:

A really fascinating thing about learning Rust was that when I went and started to do

these things—things that I would reach for in C# that I knew would work—Rust wouldn’t

allow it and as a result I had to rethink the problem and re-implement it in a way where

the ownership characteristics of that algorithm were very explicit. (P10)

Another big paradigm shift occurred for P5, P6 and P13—all transitioning from imperative or

object-oriented coding to event-driven and asynchronous coding—forcing them to think differently.

The programmers had to learn brand new concepts in JavaScript like asynchronous programming or

“shadow and virtual DOMs” (P13). P6 described how it was difficult making sense of asynchronous

code because “you got a whole bunch of ‘async/await mode’ working in your mind and you have

to convert it.” To make matters worse, “the most confusing part is there are a couple of ways to do

asynchronous programming, with observables or promises” (P13). For P5, whose background was

in C++, the front-end coding in TypeScript was a big challenge because “for the back-end, the code

I think is more straightforward. You have the logic and most likely you know single places you’ll

handle it. It’s not like the UI” (P5). Here, the interference issues aren’t due to any particular syntax or

concept but the way one solves problems in the new language.

3.3.3.3 Learning a language is difficult when there is little to no mapping with previous lan-

guages

Programmers had a harder time learning the new language when there was little to no mapping

of features to previous languages. For example, P12 could not make sense of some fundamental

programming language features of SAS that were clear in Python, like statements versus method

parameters. They could not understand “why some things are statements that affect a procedure, but

aren’t parameters” and were “still confused about the overall syntax and what is or isn’t a statement”—

even after having worked in the language for a few weeks. A drastic example was P5, who experienced

a big transition from C++ to TypeScript, resulting in tech shock: “Everything is different! Not just the

programming language—the IDE, source control, everything is different.” P13, who underwent a

similar language transition, found that concepts were challenging in JavaScript because they “could

not equate it back to C++.” Due to limited mapping of features to previous languages, programmers

could not make full use of facilitation to learn the new language.

In the extreme case, programmers were forced to learn a completely foreign syntax or concept,

in particular, when it was an essential built-in feature of the new language. For example, P9 had

difficulty learning traits in Scala because they “never had a language with traits before. Traits have a

default implementation and understanding what would be performant and what wouldn’t—and

when to use what—that was the tricky part.” P7 learned that for Python, “the major difference is

the multiple inheritance thing, that Python inherits from the C++world, which supports multiple

inheritance. In C# you can’t do that.” In another case, the difficulty was due to differences in memory

13

management, for example, when P10—who previously used C#—was learning Rust:

There’s a very alien concept in Rust that is the borrow checker, which is the concept

of having the compiler verify more things, and the way it does it is somewhat esoteric.

That’s very alien, and that’s something that I think is really cool but it’s also very rough

at the moment and so that’s kind of something that’s been the biggest struggle when

trying to learn Rust. (P10)

Even within the same context, such as data analysis or mobile applications, the lack of mapping

caused a lot of confusion. For example, P14, who switched from one data analysis language (R)

to another (Python/Pandas), could not find an immediate equivalent for R’s spread and gather
functions: “Pandas already had the functionality but it was more hidden using drop level and unstack.

These were really hard to understand in Pandas—it was some pretty weird stuff.” Similarly, P15, who

switched from C# to Swift, was very surprised to learn how the user interface code and its graphical

layout view in Xcode were connected: “Knowing that you can’t interact with a UI object straight

out of the box from the code is very important. Once you draw the referencing outlet connection

between View and Controller you can trigger methods and get/set properties as you’d expect in

the .NET world.”

3.3.3.4 Searching for the right terminology and code examples is difficult

We found that moving to a new programming language presents a selection barrier [Ko04b], making it

difficult to search for information about the language and its associated technologies. Programmers

recounted trouble acquiring the vocabulary even before performing the search. For P12, the names

for the same structures in Python/Pandas were slightly different than SAS where a “dataframe is

data set, a row is an observation, a column is a variable.” When they tried to plot with SAS, they

“don’t know what the name of the proc for plotting in SAS is so [they] have to start looking that up

first, then find documentation for a couple different ones, then have to figure out how to make

them work.” On the one hand, “it’s the breadth of the libraries that usually get you, you don’t even

know what exists, what to even look for to see if something is already there” (P1). On the other

hand, insufficient search results provided little to no facilitation. For example, P4 had difficulty

searching information for a Python library called seaborn—compared to the equivalent R library

ggplot—because “it is just less documented. For ggplot, if you google anything, you get like 100 hits,

and the top ones are bound to be good due to Google selection of results. With seaborn, you get like

10 hits.”

Even when programmers found documentation and code examples, they were either incomplete

or lacking in detail. For example, P8 expressed a frustration regarding testing libraries in JavaScript

because “they have their own convention, TypeScript has its own convention, JavaScript has its own

convention, it is actually mixing everything!” This was especially problematic when conventions

found online weren’t always the same ones used by the specific team: “There’s a lot of conventions

around the language. In C++, the styles can change a bunch from team to team” (P1). For some

14

languages, the documentation was either lacking in quality or was completely missing. For example,

P2 was frustrated with the Julia documentation because “it was so useless for figuring out the

imports.” Similarly, P12 expressed that the SAS documentation “only tells you how to copy-paste and

run a simple program, leaving you completely mystified as to how the execution and control flow

of a SAS program works.” This lack of depth can lead to frustrating experiences for programmers

when they had better documentation in previous languages, such as P15: “Xcode documentation

samples were pretty good enough to where they would run. But the documentation, MSDN, and

the available samples for creating Microsoft platform-based applications were tenfold deeper and

richer and easier for to use.”

3.3.3.5 Retooling is a necessary and challenging first step

Finally, before programming in the new language, programmers faced difficulty retooling themselves

in a new environment. This typically involved adapting to the discrepancies of the new integrated

development environment (IDE) for programming in the language. Although programmers were

able to adapt to basic features of IDEs (facilitation), there was interference when some aspects of

the IDE differed from their previous IDEs. For example, P15 discovered that in Xcode “build targets

aren’t ‘Universal’ in definition (like .NET) and when terminologies are shared across platforms but

don’t implement the same notion, you’re lost for days!” Interestingly, for P9 there was interference

when they tried building their Scala project in IntelliJ because the IDE attempted to support Scala,

but continued presenting dialogs in the previous language:

Part of the problem is IntelliJ is aimed at the Java developer and I’m using SBT, which is

from the Scala world. And it’s sort of importing the SBT into the concepts in the IDE of

IntelliJ. So I’m looking at dialogs that are all about Java and which JDK and that doesn’t

map to what I wrote in the declarative SBT language. (P9)

Other concerns regarded either a lack of IDE features or learning new features that were dis-

tracting. P2 had been “spoiled with Python and PyCharm” and found it very difficult to find proper

IDE support for Julia; they just wanted “an IDE that does syntax highlighting and IntelliSense-like

autocompletion.” P1 found that learning a new feature—like debuggers—effectively halts a pro-

grammer’s progress on actual tasks and are distracting “because you’re learning and debugging at

the same time as opposed to just debugging once you’re fluent.”

However, sometimes the transition to new tools in the language also benefited programmers. For

example, P5 found it a lot easier moving from MSBuild (C++) to Gulp (JavaScript), which allowed

fast build cycles when developing TypeScript applications. In particular, the DevOps pipeline helped

them make progress much quicker:

I think right now the build system for us, I think it’s better since now we are using

DevOps—a pipeline to build the code. It’s very easy for us to even schedule the private

build and also it’s very easy for us to quickly get new things, check in the code, test it,

and even build things on top of it. (P5)

15

Programmers confuse a new language’s syntax and concepts with previous languages, leading to

a number of issues like trying to suppress old habits, wrestling with mapping issues, struggling

to find and use proper documentation, retooling and shifting one’s mindset for new paradigms.

3.4 Limitations

Our mixed-methods approach of investigating Stack Overflow and conducting interviews introduces

certain trade-offs and limitations.

The choice of sampling technique in our Stack Overflow analysis has several trade-offs [Mos52].

Because the sampling approach is non-probabilistic, it does not allow for sample-to-population, or

statistical generalization. Rather, our approach targets diversity (rather than representativeness) in

order to identify evidence of interference across many different programming languages.

We used correct and incorrect assumptions as a proxy construct for facilitation and interference.

While this approach provides us with a useful, high-level characterization of the Stack Overflow

posts, there are potentially additional insights that we could learn had we performed a more intricate

qualitative coding technique, such as open coding. The trade-off for doing so is that open coding

is significantly more costly to execute. Instead, we conducted semi-structured interviews with

experienced programmers to delve deeper into cross-language interference.

The posts we examined on Stack Overflow as well as our interviews do not completely cover the

set of all language transitions, as the full permutation space of language transitions is intractable.

Our approach attempts to cover language transitions that are most likely to occur in practice.

Consequently, there may be some interference issues that our study was not able to identify.

Finally, we acknowledge that qualitative research, however rigorously conducted, involves not

only the qualitative data under investigation but also a level of subjectivity and interpretation on the

part of the researcher as they frame and synthesize the results of their inquiry. To support interpretive

validity, we followed the guidelines set by Carlson [Car10] and performed a single-event member

check with our results. Six participants who replied agreed with our presentation of the results and

only wanted minor changes to their quotations. Additionally, we emphasize that interference theory

is only one of many possible lenses through which we can organize and present our findings. Other

theories, such as notional machines, have also been used to identify and explain programming

conceptions [DB86; Bou81; Ber14].

3.5 Related Work

3.5.0.0.1 Novice misconceptions

Programmers often have misconceptions while learning new programming languages, but most

studies have focused on novices. Swidan et al. [Swi18] proposes “intervention methods to counter

those misconceptions as early as possible,” but this work is primarily targeted to novices. Similarly,

16

Kaczmarczyk et al. [Kac10] has examined misconceptions and how to measure them for novices.

In contrast, the novelty of our work is towards experienced programmers who need to switch

languages [Mey13], and requires methods of learning distinct from those designed for novices [Swe03;

Kel05; Guo13]. Our study investigated switching languages for experienced programmers and took

the first steps in examining how knowledge of previous languages can interfere.

3.5.0.0.2 Programming language transitions

There are a few studies on transitions between programming languages. Scholtz and Wieden-

beck [Sch90] studied experienced Pascal or C programmers writing a program in a new language,

Icon, and found that they were strongly influenced by their knowledge of what would be appropriate

in previous languages. Wu & Anderson [Wu90] conducted a similar study where programmers who

had experience in Lisp, Pascal and Prolog wrote solutions to programming problems and found

that solutions written in one language facilitated learning in another language. Uesbeck & Stefik

[Ues19] studied the effect of using multiple languages in a controlled study, where participants

implemented several variations of database queries: some variants involving the same language,

while others mixing SQL and Java. While the results were inconclusive, the authors suggest that the

methodology could be effective for studying the productivity costs associated with mixing languages.

We examined empirical evidence and conducted interviews to understand the transition from one

language to the next for various contexts. We also investigated how programmers confuse two

different languages using the lens of interference theory [Und57].

There have been fewer studies on interventions for learning new languages. Bower & McIver

[Bow11] explored a new teaching approach called Continual And Explicit Comparison (CAEC) to

teach Java, using facilitation, to students who have knowledge of C++. They found that students

benefited from the continual comparison of C++ concepts to Java. Shrestha et al. [Shr18] used

a similar technique using a tool called Transfer Tutor to teach R from the perspective of Python;

programmers who used the tool found the comparisons between the languages useful. These

intervention techniques might benefit programmers who learn new languages from the perspective

of a known neighboring language, but there are a number studies on larger transitions—for example,

from procedural or imperative to object-oriented languages [Dét95; Nel97; Nel09; Arm07]. These

studies have shown professional programmers experience greater interference as they have to make

fundamental shifts or “mindshifts,” which might require further support. In this study, we have

uncovered interference issues in the modern context and examined numerous language transitions.

We also found other issues that have not been explored like dealing with little to no mapping of

language features (Section 3.3.3.3) and retooling (Section 3.3.3.5), which have implications for future

tools and techniques.

17

3.5.0.0.3 Programming knowledge

Knowledge structures have been proposed for how programmers encode semantic [Shn79] and do-

main information [Bro83] about a program as well as prime structures [Lin79], that include elements

of syntax, control-flow and data-flow [Pen87] of the program. These knowledge structures [Ric81]

have been formalized and referred to as programming plans. Programming plans act like schemas

that are first instantiated and then its slots are filled with concrete values as a programmer builds an

understanding of the code [Sol82]. Plans may help programmers fill in the “gaps” when trying to

understand code.

Gilmore & Green [Gil88] suggested that programming plans may not generalize across different

languages, and that plans cannot represent the underlying deep structure of programs. Bellamy &

Gilmore [Bel90] examined the protocols generated from experts in different languages as they created

programs. Using two different models of programming plans, they found neither model was well

supported by protocols; further, different programming language experts generated different types

of representations. We believe our results provide further insight as to why plans may not generalize

across languages. For example, we found programmers tend to relate a new language to previous

languages (Section 3.3.2.3), which suggests an attempt to reuse previous programming plans as a

bootstrapping strategy. However, due to interference issues, the previous plans might either need

significant modifications (Section 3.3.3.3) or be replaced entirely (Section 3.3.3.2), depending on

how closely related the two languages are.

3.6 Discussion and Design Implications

Our findings demonstrate that interference is not an isolated phenomenon; indeed, in Stack Over-

flow, instances of interference are found across all of the programming languages we investigated.

Furthermore, in our interviews, participants reported that interference arises routinely as they

learn a new language—for example, from having to suppress old habits from previous languages

(Section 3.3.3.1) or having to “rethink the program” (P10) due to a substantially different paradigm

(Section 3.3.3.2 and Section 3.3.3.3).

As opposed to traditional classroom environments where one learns “step-by-step” (P5), experi-

enced programmers in our study used opportunistic strategies to learn essentially “on [their] own”

(P7) or “learning through work” (P13), for example, using online resources or asking teammates

(Section 3.3.2.2) [Bra09]. Unfortunately, these informal approaches to learning sometimes result in

an incomplete lens for how the language works, resulting in “unintentional bugs” (P5) and other

difficult-to-diagnose problems in the code when something doesn’t work as expected.

In the remainder of this section, we present design implications for technical authors, toolsmiths,

and programming language designers that can help reduce some of these interference difficulties

for programmers.

Implication I—Design documentation that reduces interference and supports knowledge trans-

18

fer. Programmers in our study desired more accessible resources that leveraged the programming

knowledge they already have (Section 3.3.2.2 and Section 3.3.2.3). Such resources included “cheat

sheets,” which present code snippets that map their familiar language to their new language (P2)

and relate concepts they already know “from working in another language” (P14), to the new lan-

guage tutorials, and even resorting to “reading other people’s code” (P3, P15) to understand the

programming language idioms.

Our findings suggest that resources that teach languages through relating a new language to a

known language are more useful and accessible to programmers than resources that present the

new programming language in isolation. Several books [Dac96; Jon02; Ohr17; Zha], blogs [Blo; Clo],

language documentation [Rub; Pan; Wil18], and training courses [Dat; Mat] embody this pedagogical

strategy.

However, these resources—while useful—are essentially hand-crafted through the authors’ in-

tuitions about what misconceptions the programmer might have, and not necessarily the ones

that programmers actually have. While misconceptions about novice programmers are readily

found in the literature [Kac10; Qia17; Dan12], misconceptions experienced programmers have are

comparatively understudied. Shrestha & Parnin [Shr19] presented three possible instrument designs

which can be used for discovering and validating misconceptions when switching languages for

experienced programmers. Such research is needed to make learning resources more effective and

relevant to experienced programmers.

Implication II—Build automated tools to provide on-demand feedback. Although technical doc-

umentation is useful, these resources are decoupled from where the programmer needs the most

help—in their program environment as they work (Section 3.3.2.2 and Section 3.3.3.4).

Automated tools can help with this. For example, Johnson et al. [Joh15] propose “bespoke”

notification tools that provide adaptive feedback to the programmer based on the programmer’s

prior knowledge of programming languages and concepts. Python 3 adopts this idea of using prior

programmer knowledge to assist programmers who come from a Python 2 background, through

hard-coded error messages: in Python 2, print does not require surrounding parentheses, while in

Python 3, print is a function and thus must be called like any other function:

>>> print "Hello"
File "<stdin>", li

print "Hello"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean
print("Hello")?,→

The SyntaxError message makes the assumption that this error is due to a misconception (or

ingrained behavior) instilled from experience with Python 2. We can repurpose this idea generally

to language transitions and help programmers more efficiently resolve error messages that they

19

might otherwise only “eventually figure out” (P1) after spending substantial time and effort.

Implication III—Be intentional about programming language syntax, semantics, and pragmat-

ics. Certain programming languages anticipate that new adopters arrive through common pathways.

That is, we expect most new Rust users to come from systems programming languages like C++, and

we expect most new TypeScript users to come directly from JavaScript. For these users, intentionally

designing language features by considering interference effects can reduce barriers (Section 3.3.3.2

and Section 3.3.3.3) to adopting the new programming language.

As an example, a substantial barrier to new Rust users is the borrow checker—a compile-time

feature that helps enforce safe memory management [Zen19]—which our own participants de-

scribed as “a very alien concept” (P10). Even the Rust manual concedes that borrow checking has a

costly “learning curve” and that programmers “fight with the borrow checker” because their “mental

model of how ownership should work doesn’t match the actual rules that Rust implements” [Rus].

Interference theory also explains these difficulties: for some programmers, the borrow checker

is so unfamiliar as a concept that they have no prior support to facilitate learning; and for other

programmers, borrow checker concepts at a casual glance seem similar to existing models, such as

“resource acquisition is initialization” (RAII), in C++, but ultimately functions differently enough

that it interferes with their past knowledge.

Intentionally considering these adoption pathways as part of language design can reduce these

interference challenges. For instance, the “primary goal of TypeScript is to give a statically typed

experience to JavaScript development” and “the intention is that TypeScript provides a smooth tran-

sition for JavaScript programmers—well-established JavaScript programming idioms are supported

without any major rewriting or annotations” [Bie14]. But providing this smooth transition has a

costly consequence: “the TypeScript type system is not statically sound by design.”

As the two examples illustrate, designing for interference requires making difficult design trade-

offs. But if we want to design programming languages that people actually use, we need to consider

how our language design decisions interfere or facilitate with our anticipated programmers’ prior

knowledge.

Implication IV—Support not only programming languages, but programming language ecosys-

tems. Issues with interference when learning new programming languages are exasperated when

new programming languages bring with them new programming language ecosystems—that is,

“everything is different, not just the programming language” (P5), but the environment in which the

programmer builds, edits, debugs and tests their code (for example, tech shock, Section 3.3.3.5).

To address these challenges, React developers provide tool support to welcome programmers

into the new ecosystem. Specifically, the create-react-app [Cre] is an integrated toolchain that

abstracts away the complexities of third-party library management, live-editing, optimization, and

configuration. create-react-app allows the user to quickly and easily begin experimenting with

the library until the programmer is comfortable enough to eject from the create-react-app

20

toolchain.

A second method to minimize interference issues from ecosystems is to unify the underlying

tooling environment, or at least provide the programmers with a unified tooling experience. From

this perspective, we would recommend that toolsmiths and language designers add support for

programming languages to well-established integrated development environments, rather than

providing custom tool and editing experiences. For instance, the language server protocol (LSP) [Lan]

allows programming language support to be implemented and distributed independently of any

given editor or IDE, as long as that IDE implements LSP.

In short, language designers should collaborate with tool designers so that programmers can

more easily adopt new programming languages through editing environments that are already

familiar to them.

3.7 Conclusion

We conducted a mixed-methods study to understand what impact previous programming language

experience has on programmers in Stack Overflow questions across 18 different programming

languages and semi-structured interviews with 16 professional programmers. From Stack Overflow,

we found 276 instances of interference that occur across multiple languages. We then interviewed

programmers who reported various challenges learning a new language like mixing up the syntax

and concepts with their previous programming languages due to interference. We discussed design

implications for technical authors, toolsmiths, and language designers, such as designing documen-

tation and building automated tools that reduce interference, and welcoming programmers not

just into a language, but its entire ecosystem. To answer the question posed in the prelude, even

professional programmers have difficulties with learning programming languages, and we should

offer tools and techniques to help them learn more efficiently and effectively.

21

Table 3.3 Learning Strategies and Language Interference Themes

Learning Strategies
THEME DESCRIPTION REPRESENTATIVE EXAMPLES PARTICIPANTS1

Learning on their own
(Section 3.3.2.1)

Programmers lacked formal train-
ing for the new language and its
associated technology stack, leav-
ing learning to themselves.

“We didn’t have a procedure for people getting up
and running.”
“‘I just do everything ad-hoc!”
“I got initial tips from some folks from the team
on what’s what.”

P1, P2, P5, P6,
P7, P13, P14, P15,
P16

Just-in-time learning
(Section 3.3.2.2)

Programmers focused on only
learning features as needed.

“There’s probably like a content cheat sheet.”
“I didn’t learn typescript step-by-step.”
“Step one for me is always find and read other
people’s code.”

P1, P2, P3, P5, P9,
P14, P15

Relating new language to
previous languages
(Section 3.3.2.3)

Programmers tried to map fea-
tures of the new language to their
previous languages.

“I loosely [take] ideas from working in another
language.”
“I would try to find the counterpart of C++ in Re-
act.”
“If you can compare them side by side and
find their similarities you’re more than halfway
there.”

P1, P2, P9, P12,
P13, P14, P15

Language Interference
THEME DESCRIPTION REPRESENTATIVE EXAMPLES PARTICIPANTS2

Old habits die hard
(Section 3.3.3.1)

Programmers had to constantly
suppress old habits from previous
languages.

“I’m typing a[1] thinking that it’s a[0].”
“I still type the type first before the variable.”
“I’m gonna make it an object for this, no don’t do
that!”

P2, P3, P4, P6, P9,
P15

Mindshifts when
switching paradigms
(Section 3.3.3.2)

Sometimes programmers wres-
tled with larger differences that
required fundamental shifts in
mindsets, or “mindshifts.”

“All my assumptions were thrown out the win-
dow.”
“I had to rethink the problem and re-implement
it.”
“There are lots of events and promises all these
things makes it really hard to debug.”

P2, P5, P6, P9,
P10, P13, P15

Little to no mapping
with previous languages
(Section 3.3.3.3)

Programmers had a harder time
learning the new language when
there was little to no mapping of
features to previous languages.

“There’s a very alien concept in Rust that is the
borrow checker.”
“I’ve never had a language with traits before.”
“I did not work with concepts like virtual DOM,
shadow DOM before.”

P2, P5, P9, P10,
P11, P15

Searching for terms and
documentation is hard
(Section 3.3.3.4)

Programmers found it difficult to
search for information about the
language and its associated tech-
nologies.

“You don’t even know what exists, what to even
look for.”
“Scala is not that common. Some of it required a
little deeper digging.”
“They have their own convention, TypeScript has
its own convention, JavaScript has its own con-
vention.”

P1, P2, P4, P8, P9,
P11, P12

Retooling is a
challenging first step
(Section 3.3.3.5)

Programmers faced difficulty re-
tooling themselves in the environ-
ment of the new language.

“I was using Visual Studio to debug C# code and
now it’s gdb to debug C++ code.”
“In Xcode, build targets aren’t ‘Universal’ in defi-
nition like .NET.”
“The problem is IntelliJ is aimed at the Java devel-
oper and I’m using SBT which is from the Scala
world.”

P1, P2, P9, P12,
P15

1 Participants who used a similar learning strategy.
2 Participants who experienced the particular language interference theme.

22

CHAPTER

4

AN ONLINE COMMUNITY OF PRACTICE

FOR DATA SCIENTISTS

Data science practitioners face the challenge of continually honing their skills such as data wrangling

and visualization. As data scientists seek online spaces to network, learn and share resources with

one another, each individual has to employ their own ad-hoc strategy to practice their data science

skills. Given these disjointed efforts, it is crucial to ask: how can we build an inclusive, welcoming

online community of practice that unites data scientists in their collective efforts to become experts?

In this chapter, we discuss a study conducted on #TidyTuesday—a daily hashtag project for data

scientists using R—as one solution to this problem.

4.1 Motivation

Data scientists are increasingly prevalent in online spaces. They are a group of people who are dis-

tributed across various parts of the world with diverse backgrounds, from statistics to bioinformatics

to graphics. Data scientists also differ from traditional programmers and are typically end-users

without a formal background in programming [Kan12]. To build up their expertise, they are faced

with the constant challenge of practicing skills like acquiring, cleaning, wrangling, visualizing, and

presenting data. To expedite their learning process, data scientists are becoming dependent on

faster, more accessible resources which are typically found online like tutorials, documentation,

or Q&A sites [Vas14b; Vas14a]. However, data scientists can get socially isolated in their efforts for

practice without a community of practice, which can negatively impact motivation for consistent

practice. Without a community to grow in, data scientists also miss out on tacit knowledge like best

23

practices and techniques not captured in online resources. As data scientists seek help in online

spaces, it is crucial to ask: how can we build an inclusive, welcoming online community of practice

that unites data scientists all over the world in their collective efforts in becoming experts?

Daily hashtags have been used by several online communities on Twitter to organize discussions

around a topic, activity, or event. Twitter hashtags (#) have been previously used for trending “tweet

chats” around activism such as challenging engineering stereotypes [Liu17] (#ILookLikeAnEngineer),

or exchanging knowledge during breaking news such as pandemics [Kos14] (#SwineFlu). A daily

hashtag is a different type of hashtag which is used periodically. For instance, #AdventOfCode is a

popular daily hashtag where in the month of December, each day presents a new programming

puzzle. Programmers then post a tweet and share their thoughts about their own approaches in

solving the puzzles. Daily hashtags can help build a community of practice (CoP) by allowing

programmers of all skill levels to practice solving programming puzzles and network or exchange

knowledge on Twitter. But, can daily hashtags provide an online CoP for data scientists? Thus, our

research questions for this study are:

• RQ1: Who participates in Tidy Tuesday and what are their motivations and goals?

• RQ2: What do participants gain by participating in Tidy Tuesday?

• RQ3: How does social activity around Tidy Tuesday cultivate a community of practice?

To investigate our research questions, we conducted a qualitative case study on #TidyTuesday—a

daily hashtag project for data scientists to practice their data wrangling and visualization skills using

R. #TidyTuesday provides data scientists access to a curated dataset in a GitHub repository every

Tuesday. Participants perform their analysis of the dataset and produce plots answering exploratory

questions of their own. They are encouraged to share a tweet with the hashtag including a link to

their code and the plot they produced. #TidyTuesday can be characterized using the three main

components of a CoP: the domain (data science), the people (data scientists), and the practice (data

analysis and visualization). To understand the motivations and goals of #TidyTuesday participants

and the social interactions that help form and sustain an online CoP, we conducted semi-structured

interviews with 26 data scientists. The participants were from diverse backgrounds with varying

skill levels from beginners to veterans, some of whom are widely known in the larger data science

community. These characteristics provided us with the opportunity to explore a broad range of

experiences which provide insights into why data scientists use #TidyTuesday, what the benefits are,

and how it is used to cultivate an online CoP using [Wen02b].

From our qualitative analysis of #TidyTuesday, we found several motivations behind participa-

tion, and the ways in which the project successfully grows an online community of practice, which

both corroborate previous findings and extend them. Participants’ main motivation was to hone

their data science skills with the help of weekly-released, curated datasets and a community of

practice. #TidyTuesday participants underwent transformative experiences such as discovering

numerous R packages and tools from others, improving data wrangling and visualization skills,

24

building data visualization portfolios for the job market, and supporting offline events like work-

shops and “hacky hours”. We discuss how #TidyTuesday enabled these experiences by relating the

project to constructs of a CoP and its design components [Wen02b] such as providing a rhythm,

and having a loose and flexible structure to fit each individual’s needs. However, we also identified

barriers of entry for newcomers such as not knowing how to start and a general lack of constructive

feedback and mentorship. To our knowledge, this is the first paper to explore the R community in

cultivating an online CoP through the use of daily hashtags on Twitter. The key contributions of this

paper are:

• The first qualitative study of #TidyTuesday, a daily hashtag that formed an online CoP for data

scientists using R, through semi-structured interviews with 26 data scientists.

• An analysis of the intrinsic and extrinsic motivations behind participation in #TidyTuesday,

the benefits gained by participants, and the social interactions that helped grow and sustain

the project.

• A discussion of the design trade-offs of using daily hashtags on Twitter and a set of guidelines

to successfully grow and sustain an online CoP for data scientists, and overcome learning and

social barriers.

4.2 Related Work

In the following subsections, we present findings in the CSCW and HCI literature with regards to

community of practice, data scientists and the R community, as well as daily hashtags on Twitter.

We highlight the gaps in knowledge with how to foster an online community of practice through the

use of Twitter for data scientists.

4.2.1 Communities of Practice

Communities of practice (CoP) are groups of people who share a concern, a set of problems, or a

passion about a topic, and who deepen their knowledge and expertise in this area by interacting

on an ongoing basis [Wen02a]. We study a nascent R community forming on Twitter around the

#TidyTuesday project, designed to provide an online CoP for data scientists to practice data wran-

gling and visualization. The relevant literature we examined for studying #TidyTuesday include the

design components necessary for cultivating a CoP developed by Wenger et al. [Wen02b], the idea of

Twitter as an imagined community [And06] by Gruzd et al. [Gru11], and sense of community (SoC)

theory by McMillan & Chavis [McM86]. Wenger et al. [Wen02b] describe how a CoP is different from

organizational design which focuses on fixed goals and elements, where optimizing for aliveness

is emphasized because a community has to invite interactions to keep it alive and growing. The

authors suggest creating rhythm for the community, which daily hashtags like #TidyTuesday is

designed to provide. Gruzd et al. [Gru11]’s study of a single member’s Twitter network is also impor-

tant because they found that Twitter can meet Jones [Jon97]’s minimum requirements for a virtual

25

settlement like interactivity, or sustained membership over time. The authors found that a single

individual can form their own personal community on Twitter through network analysis, while we

study many individuals who are joining a growing community of practice around #TidyTuesday

using a qualitative approach to gain rich insights into motivations, and social interactions that help

cultivate an online CoP. Finally, McMillan & Chavis [McM86]’s “Sense of Community” (SoC) theory

outlining characteristics of a community like the fulfillment of needs is also relevant to how well

#TidyTuesday meets the R community needs. We extend the literature on online CoPs by applying

the framework on the #TidyTuesday project on Twitter and contribute new perspectives on how a

data science CoP can be formed and sustained.

The CSCW and HCI communities have used the CoP framework as a lens for studying various

groups in social media sites. For example, Marlow & Dabbish [Mar14] studied graphic designers and

the social transparency provided by SNS (Social Network Site) features of a design portfolio website

called Dribbble [Dri]. They found that SNS functionalities like following members and having access

to artifacts supported social learning via legitimate peripheral participation (LPP) [Lav91] and

professional identity development. Holikatti et al. [Hol19] also found heavy use of LPP in Facebook

groups for learning how to host living spaces using AirBnB [Air], a sharing economy platform for

hosting living spaces all over the world. They found that members learned affordances of AirBnB

through Facebook by asking questions and interacting with more experienced AirBnB users. In our

study, #TidyTuesday on Twitter facilitates these social transparencies via public tweets and links to

code, which provides opportunities for skill and professional development via LPP. Kou et al. [Kou18]

used CoP as a framework to study the changing practices of user experience (UX) professionals on

reddit where they identified social roles in relation to knowledge production and dissemination

in the online community of volatile practice—rapidly changing occupations. Data scientists face

similar challenges in a young field that is ever evolving, and we provide an instance of using an

online community of practice for those who are entering the field (more in Section 4.2.3). We extend

the literature by studying how the R community use Twitter to improve their data wrangling and

visualization skills, learn from each other, and gain a sense of community in an evolving field.

There is also prior work which examines accessibility, motivations and barriers in various online

CoPs. For example, Mugar et al. [Mug14] studied the accessibility of participation norms in online

communities where participants lack full access to others’ work. The authors combined the theory of

legitimate peripheral participation with the theory of social translucence to derive practice proxies

such as traces of user participation in online environments that act as resources to orient newcomers

towards the norms of practice. Similarly, Xu & Bailey [Xu12] uncovered motives for participation

and expectations of the critiques within an online community. They provide recommendations for

improving the design of systems that support community-based critique of creative artifacts. Our

study provides similar insights within the data science context with regards to motivations behind

participation in a community-led project like #TidyTuesday, discussing how Twitter can facilitate

LPP, but also limit distributed critique.

26

4.2.2 Data Scientists

People across a wide range of professions now write code as part of their jobs with the purpose of

obtaining insights from data rather than building software. The popular term for this type of work is

“data science” and the group of people are often called “data scientists”. Data scientists come from

various backgrounds like engineering, business, design, and research [Dav12]. They are increasingly

prevalent in both industry and academic settings. In industry, data scientists work in numerous

sectors like public policy, technology, and healthcare [Loh17]. In academia, data scientists are

graduate students, professors and technical staff writing code to make research discoveries [Guo12].

Data scientists are known to be like end-user programmers, writing code as a means to an end—to

gain insight into data. Unlike traditional programmers, they are also a group that heavily engages in

exploratory programming [Ker17c]. In particular, data scientists heavily engage in exploratory data

analysis where they continually explore questions about the data and iteratively refine statistical

models and visualizations to paint a story. However, data scientists also share similarities with

software engineers, writing reusable analysis code to share with others—they engage in what Ko

et al. [Ko11] call end-user software engineering.

Despite the growth of data science, there is little understanding of how data scientists are learning

and practicing their skills outside of corporate and organizational settings. Prior work has given

insight on the activities data scientists engage in at work [Guo12; Kan12; Ker17c; Kim16; Rul18;

Seg07], and how practitioners teach beginners in both industry and academia [Kro19]. However,

there are only a few studies examining how data scientists hone several skills such as acquiring,

cleaning, wrangling, visualizing, and presenting data [Har15; Kan12]. To gain expertise in these

skills, data scientists must decide between many different learning paths: attending a university

and acquiring a data science major [Tre17; Van18], taking MOOCs (massive open online courses), or

participating in hands-on workshops [Wil06] and coding bootcamps [Top; Cam20]. Despite data

science programs becoming increasingly available, there is still debate around what to include in a

data science curriculum [Bar18b] and how to prepare students for the industry.

Prior CSCW and HCI research has explored how data scientists work in both organizational and

corporate settings, as well as in informal settings. There are several studies on solitary data science

practices related to data wrangling tools [Guo11; Sut18], as well as exploratory analysis and barriers

in computational notebooks [Ker18; Cha20]. In collaborative settings, Passi & Jackson [Pas17] and

Passi & Jackson [Pas18] have found that data scientists collaborate in order to resolve tensions

around trustworthiness of data and the analysis process. There has also been several studies on how

data scientists collectively curate data [Mul19; Zag16], work together on a project [Zha20a; Wan19],

share code in competitions [Tau17], and do data science for social good [Zeg18]. For example, Hou &

Wang [Hou17] studied collaboration in two civic data hackathons, where data science workers help

non-profit organizations and discovered unique broker roles. Tausczik & Wang [Tau17]’s study on

Kaggle competitions found that data scientists re-use and share code with one another, which helped

individuals practice and hone their skills. We extend these studies by providing insights about how a

daily hashtag like #TidyTuesday helps data scientists hone their individual skills, while cultivating a

27

community of practice in the wild and outside of organizational, corporate, and hackathon settings.

4.2.3 The R Community

The R project [Rpr]was born in 1993 as a free and open source programming language and software

environment for statistical computing, bioinformatics, and graphics [Iha96]. The R community is

an open source community made up of an R-core, a team of software developers that maintain

and evolve the R language, language users and package developers. The R community has also

been the subject of extensive research in community evolution [Ger13; Vas14a] and the interplay

between different channels [Vas14b] for asking questions such as Stack Overflow and mailing lists,

where members are active in both channels but noticeable shifts towards the former in recent

years. Zagalsky et al. [Zag16]’s study on the R community on Stack Overflow versus R-help mailing lists

is especially relevant to our study. They describe how users exchange different types of knowledge

on Stack Overflow and mailing lists, including a description of the reasons why members choose

one channel over the other: users preferred Stack Overflow for the ability to gain peer recognition

and faster turnaround on questions, while others preferred the R-help mailing list for its flexibility

on topics and the high activity of experienced users.

There are several key players in the R community that have shaped the modern R commu-

nity, making significant strides into promoting inclusivity, open source software, and education.

RStudio [Rstb], a company behind the popular RStudio IDE (Integrated Development Environ-

ment) [Rsta] has been developing programming tools in R, making them more accessible to data

scientists. RStudio is also a Certified B Corporation [Bco] company dedicated to creating and sus-

taining open source software for data science. Several leaders within the R community work at

RStudio like Chief Scientist and Educator, Hadley Wickham and Software Engineer, Jenny Bryan,

who have been pushing for more inclusiveness and diversity in the R community. Another key

player is the R-Ladies Global [Rla], a worldwide organization whose mission is to achieve propor-

tionate representation by encouraging, inspiring, and empowering people of genders currently

underrepresented in the R community. They have over 138 chapters in 44 countries and 39000

members, holding meetups and events worldwide in order to introduce minority populations to

programming in R. The Carpentries [Car] organization have a similar mission to foster diversity

and inclusion as well as provide essential data and computational skills for conducting efficient,

open, and reproducible research. The Carpentries hold workshops, develop openly available lessons

designed using evidence-based teaching practices.

The R community has been shifting towards an online community on Twitter (#rstats) and

undergoing a trend towards a new style of R programming called tidy R, which offer a user friendly

and consistent way of doing data analysis and visualization. The #rstats community is prevalent

on Twitter, and there is even an online textbook called “Twitter for R programmers” [Bar20] to

help onboard non-Twitter users. Along with the move to sites like Twitter, there is also a popular

programming paradigm in recent years called tidy R, comprised of packages in the “tidyverse” [Tida]

that “share an underlying design philosophy, grammar, and data structures” of data [Wic14]—a

28

framework to tidy data and make it amenable for further analysis. #TidyTuesday encourages the use

of this framework and provides yet another online resource to existing online channels like Stack

Overflow and R-help mailing lists, but takes place on Twitter, where new types of knowledge might

be created. The R community and its dynamics in social media sites like Twitter has not received

attention of researchers, and we believe are one of the first to explore how Twitter can be used to

share knowledge and learn from each other through #TidyTuesday.

4.2.4 Hashtag Movements on Twitter

Twitter has been extensively studied to explore how they are used by online communities to or-

ganize discussions around a topic, activity, or event. On Twitter, a hashtag (#) character is used

for trending “tweet chats” around activism such as challenging engineering stereotypes [Liu17],

or exchanging knowledge during breaking events [Cui12] such as natural disasters [Pot11]. There

is an emerging body of research that is related to the online communities emerging on Twitter

viewed through various analytic lens like social translucence, imagined communities, networks, or

linguistic analysis [LK13; Eri08; Gru11; Hub08; Zap11; Zap12]. Gruzd et al. [Gru11]’s Twitter as an

“imagined community” comes closest to our study, which found that Twitter is capable of forming a

sense of community online for a single individual and their personal network. Our work provides a

qualitative approach by interviewing many individuals participating in #TidyTuesday, providing

insights into why data scientists participate in the project and how the social interactions lead to a

successful CoP on Twitter which also provide facilitation of in-person events like meetups.

Recently, users of Twitter use daily hashtags which repeat on a given day and provide various

means to form a community of practice. Daily hashtags have been used for sharing knowledge

or organizing discussions for a particular topic or domain. For example, they have been used for

academic advising with professional development [Pas19], and for synchronous discussions around

healthcare [Gil16]. Within programming communities, #AdventOfCode [Was] is an example of a

popular daily hashtag where each day of the Advent calendar presents a new programming puzzle to

solve. Programmers then post tweets and share their thoughts about their solutions and reflections

in solving the puzzles. The data science communities have also recently adopted daily hashtags

using a similar structure for practice. #MakeoverMonday [Kri] is a daily hashtag for data scientists

using the Tableau [Tab] software to produce data visualizations and post their submissions on

Twitter every Monday. We extend the research on Twitter-based CoPs by studying #TidyTuesday as

an example of a daily hashtag targeted towards data scientists wishing to practice their data science

skills and become part of a community to grow in.

4.3 Method

In this section, we present details about #TidyTuesday and how it relates to similar projects in the R

community and discuss the research questions we investigated, and the qualitative methods we

used to answer them.

29

04/01/18 06/01/18 08/01/18 10/01/18 12/01/18 02/01/19 04/01/19 06/01/19 08/01/19 10/01/19 12/01/19
0

200

400

600

N
um

be
r o

f u
se

rs users

04/01/18 06/01/18 08/01/18 10/01/18 12/01/18 02/01/19 04/01/19 06/01/19 08/01/19 10/01/19 12/01/19
Date

0

1000

2000

3000

N
um

be
r o

f t
w

ee
ts tweets

Figure 4.1 Cumulative growth of unique #TidyTuesday users and tweets from April, 2018 to Jan, 2020.

4.3.1 Research Setting: #TidyTuesday

4.3.1.1 Precursors to #TidyTuesday:

In order to understand the background behind #TidyTuesday, we first interviewed Thomas Mock,

the creator of the project. During graduate school, Thomas became involved with an online learning

community called R4DS (R for Data Science). Jesse Mostipak started the R4DS project in 2018 as a

book club [Mos] for the R for Data Science textbook [Wic17]. Since then, the project has evolved

into a learning space on Slack [Sla], where programmers of all skill levels can ask questions about R,

similar to Q&A sites like Stack Overflow, but designed to foster a friendly, welcoming environment

that promotes discussions. We gathered statistics from Jon Harmon who leads R4DS Slack and found

that it has 6139 total members, 426 weekly active members, 130 of who have posted. There are also

weekly office hours for learners who have more specific questions that mentors can answer.

When Thomas joined the R4DS online learning community, he wanted to start a smaller project

designed to provide efficient practice for data scientists using R. The R4DS had experimented with

a project called #TidyWeek [Tidb] with a different goal from R4DS: pairing learners and experts

with an emphasis on reviewing code. Interested learners would sign up for #TidyWeek, who would

be matched with a mentor to get help and feedback on their R project that they were working

on. However, the matching process and coordinating between mentors and learners became too

difficult to sustain and required a high level of coordination for both learners and mentors.

4.3.1.2 Inception and growth of #TidyTuesday:

Thomas then spearheaded #TidyTuesday, which was designed to be a smaller, loosely structured

project that could solve the issues of #TidyWeek and his own pain points learning R. After privately

experimenting with the project and getting feedback from the R4DS online learning community

leaders (C13, I14, I17), Thomas introduced the project to others in the R community, who are

30

prevalent on Twitter (#rstats, #r4ds).1 His main goal behind #TidyTuesday was to help himself and

other data scientists practice their data wrangling and visualization by providing access to weekly

released, real-world datasets, and to encourage sharing of code to facilitate social learning [Moc18].

The #TidyTuesday project has been steadily growing since its inception making it a suitable case

study of how an online community of practice for data scientists can grow and sustain itself on Twitter.

As shown in Figure 4.1, #TidyTuesday has become quite popular in the R community with over 3834

unique tweets that contained the hashtag from 607 unique users from April, 2018 (inception) to

January, 2020 time period.

Figure 4.2 An example of a #TidyTuesday submission tweet and feedback.

4.3.1.3 #TidyTuesday tweet anatomy:

An example of a #TidyTuesday submission tweet and feedback are shown in Figure 4.2. On the left

is the submission tweet where the poster provides background about the dataset they analyzed

and visualized. To help others reproduce their work, a poster typically includes a link (GitHub) to

the code and an attached visualization (stacked area plot) exploring a certain aspect about the

dataset. Sometimes, the poster will provide a description of the R packages (sonify), functions

1https://twitter.com/thomas_mock/status/980921600429252608

31

https://twitter.com/thomas_mock/status/980921600429252608

or tricks which can facilitate disseminating best practices. Moreover, credit is given to individuals

(@DrMowinckels_e) who have helped them produce the plot. On the right of Figure 4.2 is an example

of what the feedback typically looks like, where others may compliment them and the poster may

provide further elaboration on their submission.

4.3.2 Research Questions

In order to understand what the #TidyTuesday participants’ motivations were, how the project ben-

efited them, and how it formed an online community of practice, we had three main research goals.

The first goal was to understand why a data scientist participated in the project. The second goal was

to understand the beneficial experiences that data scientists went through as they participated in

#TidyTuesday. Finally, the third goal was to identify the various ways in which #TidyTuesday helped

form and sustain an online CoP on Twitter. Thus, we investigated three research questions:

• Who participates in Tidy Tuesday and what are their motivations and goals? To understand

who typically participates in #TidyTuesday, we asked data scientists about their background,

motivations and goals they hoped to accomplish with the project.

• What do participants gain by participating in Tidy Tuesday? To understand how #TidyTues-

day benefits its participants, we asked questions about their overall experience with the project,

including perceived benefits and challenges.

• How does social activity around Tidy Tuesday cultivate a community of practice? To inves-

tigate whether social activity around #TidyTuesday forms and sustains a CoP, we asked data

scientists about their social interactions on Twitter and analyzed them through the lens of the

CoP framework.

4.3.3 Interviews

Demographics and recruitment. We interviewed 26 total data scientists (Table 4.1). The participants

were from 14 different fields and worked in 3 sectors: 13 in academia, 9 in industry, and 4 in healthcare.

Participants self-reported age (18-24 = 1, 25-34 = 9, 35-44 = 9, 45-64 = 1, NA = 6), gender (14 men

and 12 women), and education level (Bachelor’s = 6, Masters = 6, Doctorate = 14). The participants

had varying years of programming experience in R ranging from 1 to 3 (7), 3 to 5 (5), and 5 or more

years (14). We recruited the participants using a combination of random and snowball sampling.

We first used random sampling of the authors of tweets in the April 2018 to Jan 2020 time period

and contacted them via email. We ensured that participants were actually making a submission

for #TidyTuesday by inspecting their tweets; some were dropped and replaced due to unrelated

tweets. For the posters group, we were interested in being able to contrast the experiences between

different skill levels, so we tried recruiting between two groups: 7 one-offs, who only posted one

submission and 8 persistent, who posted multiple submissions. To effectively recruit the curators

32

Table 4.1 Demographics of interviewees

Social Role * ID Gender Degree Field Sector Posts
Poster P1 M Masters Data Science Academia 1
Poster P2 M Bachelors Statistics Academia 6
Poster P3 F Doctorate Environmental Science Academia 1
Poster P4 F Doctorate Library Science Academia 1
Poster P5 M Doctorate Data Science Industry 1
Poster P6 M Bachelors Data Science Industry 27
Poster P7 M Bachelors Biotechnology Healthcare 17
Poster P8 M Bachelors Biostatistics Industry 10
Poster P9 F Doctorate Math Education Academia 6
Poster P10 M Masters Marine Ecology Academia 1
Poster P11 F Doctorate Marine Ecology Academia 11
Poster P12 F Doctorate Ecology Science Academia 10
Poster P16 F Doctorate Statistics Academia 15
Poster P25 M Doctorate Radiology Healthcare 1
Poster P26 F Masters Statistics Academia 1
Curator C13 M Bachelors Content Science Industry 50
Curator C19 M Masters Marketing Industry 15
Curator C20 M Doctorate Data Science Industry 24
Curator C21 F Doctorate Data Science Academia 14
Curator C24 M Bachelors Bioengineering Healthcare 24
Influencer I14 F Masters Data Science Industry 7
Influencer I15 M Doctorate Data Science Industry 43
Influencer I17 M Doctorate Data Science Academia 78
Influencer I18 F Doctorate Data Science Industry 22
Influencer I22 M Doctorate Ecology Science Academia 62
Influencer I23 M Masters Psychiatry Healthcare 72

1 * Posters focus on posting and sharing their submissions with others. Curators make efforts to
organize tweets and learning resources to make it easier for others to participate. Influencers grow
and promote the movement.

and influencers, who were highly influential for growing #TidyTuesday and the R community at-

large, we used snowball recruitment starting from Thomas Mock. We did not offer compensation for

participants. To determine who to interview next, we used a constant comparison method [Gla67]

to guide our decisions about theoretical saturation.

Social roles. From our preliminary examination of the #TidyTuesday tweets, and tying in past

literature on the various skill-sets and roles played by participants within communities of practice,

we categorized our participants based on three social roles: poster, curator, and influencer Table 4.1

presents the full list of participants and their social roles in the project. There were 15 posters, who

varied in their level of engagement with #TidyTuesday from “one-offs” (P1, P3, P4, P5, P10, P25,

P26) who only posted their submission once to those who posted subsequent posts (P2, P6, P7,

P8, P9, P11, P12, P16). Liu et al. [Liu17] used a similar category for participants when analyzing

33

tweets related to the #ILookLikeAnEngineer identity hashtag movement; however, we do not focus

on “passive” readers for this study since we are only interested in why members participated in the

first place. There were 5 participants who served the role of curators: in addition to posting their

submissions, these participants engaged in organizing, highlighting submissions or contributing

new tools to enhance the project. Data curators have been studied before by Zagalsky et al. [Zag16]

in Stack Overflow and mailing lists in the R community and by Middleton et al. [Mid20] for baseball

analytics within the Sabermetrics community. In this study, curators were interested in improving

#TidyTuesday and the larger #rstats community on Twitter by organizing tweets and creating tools

to facilitate participation. Finally, 6 were influencers who were already immersed in the R commu-

nity and had a large following on Twitter. They were a mix of individuals who were either highly

involved in making contributions with their own #TidyTuesday tweets or spreading the movement

and encouraging others to join. This social role is based on Graham & Wright [Gra14]’s study of

“superposters” and the role they play in an online forum which found that, despite the potential

for negative influence, they had a significant positive effect on others by helping them and being

empathetic towards their problems.

Interview Protocol. The first author conducted 30-60 minute semi-structured interviews over

Google Hangouts. All the interviews were done remotely using a template2 which included questions

around the following topics:

• Motivation to participate in #TidyTuesday.

• Experience participating in #TidyTuesday and its usage.

• Interactions with the R community on Twitter and elsewhere.

For each interview, the audio was recorded for transcription and analysis. The first author transcribed

all of the interviews. We iteratively developed these questions based on a few pilot interviews to

get meaningful responses around motivation, the experiences related to the daily hashtag, and

community interaction. Topics like how participants engaged with the R community in contrast to

other similar communities did not get much coverage; this is understandable as the R community

might be their first one they engaged with. While the structure of the interviews remained constant,

we let participants discuss other tangential topics.

4.3.4 Analysis

We audio-recorded and analyzed the transcripts of the semi-structured interviews. Before analysis,

we first segmented the transcripts into different sections reflecting the semi-structured interview

questions (Section 4.3.3). We then began analysis with open coding [Cha06] on each topic looking

for similarities and differences across the interviewees’ thoughts or actions and assigning short

phrases as codes. Some examples of first-level codes include codes like “accountability”, “copy-paste

code”, or “coding alone”. We wrote memos and engaged in continual comparison of the codes with

2https://go.ncsu.edu/tidytuesday

34

https://go.ncsu.edu/tidytuesday

one another and we performed focused coding [Cha06], grouping similar codes and analyzing

them to identify high level themes like “creating rhythm for practice”, “enhancing technical and

communication skills”, or “community participation on Twitter”. Finally, we refined themes in the

central concepts of participation in the project, the daily hashtag’s impact and cultivation of an

online community of practice.

4.4 Results

In our analysis, we found that participants had various intrinsic and extrinsic motivations, were

positively transformed by participating in #TidyTuesday, and their social interactions on Twitter

helped build a community of practice for data scientists using R. In the following sections, we discuss

themes related to each research question.

4.4.1 Who participates in Tidy Tuesday and what are their motivations and goals?

Participants had various intrinsic and extrinsic motivates to participate in #TidyTuesday. Posters

were mainly concerned with skill development and increasing their public presence in the R com-

munity through the project and their tweets. Curators, in addition to posting their submissions, were

interested in organizing, highlighting submissions or contributing new tools to enhance the project.

Finally, influencers were motivated to improve their skills, but wanted to focus their efforts on

growing and promoting the project through various ways. We discuss the themes around motivation

below and summarize them in Table 4.2.

4.4.1.1 Low barrier of entry:

To participate in #TidyTuesday, all participants were motivated by the low barrier to entry to con-

tribute and get involved with the project. Participants expressed that it was easy to participate in

#TidyTuesday because the requirements were minimal:

“To me, there’s no better on-ramp then download R, download RStudio, install ggplot2

and then make your first plot. From there, when somebody makes their first plot they’re

like ‘holy crap that is way better than me fussing around with Excel chart wizard.”’ (C20)

The lack of a formal onboarding or signup process made it easy for participants to join the

project when they felt ready. In fact, many participants (P5, P6, P7, P9, P12, I15) were unsure on

participating and passively observed the project on Twitter for a few weeks (3-4), learning about

how others tweet and interact with one another before they deciding to get involved. The “lurking”

(P16) behavior corroborates previous work related to legitimate peripheral participation (LPP),

where users are found learning about the community practices and behaviors given access to

user profiles and shared artifacts [Hol19; Mar14; Bry05]. The choice of Twitter as the #TidyTuesday

community public place provided similar affordances enabling LPP—participants can search, save,

35

Table 4.2 High level themes influencing participation

Theme Representative Example
Low barrier of entry
(Section 4.4.1.1)

“Instead of us having to come up with
the idea of the data set Tidy Tues-
day does that and it was just perfect.”
(P12)

Curated datasets for a time-boxed activ-
ity
(Section 4.4.1.2)

“I had three hours a day where I was
like on the subway essentially and it
was the perfect thing to do during that
time.” (P16)

A weekly rhythm
(Section 4.4.1.3)

“I kind of used it as a practice and a
weekly sort of accountability.” (P3)

Improve technical and communication
skills
(Section 4.4.1.4)

“Tidy Tuesday just seemed perfect be-
cause after a few weeks of just seeing
a lot of people have done, you kind
of pick up some tips about how to do
stuff.” (P6)

Connecting with the community
(Section 4.4.1.5)

“I wanted to be a part of the R com-
munity first, and Tidy Tuesday with
the visualizations was like a way to get
there.” (C20)

and observe others’ tweets, which include links to the code on open source websites like GitHub,

GitLab, or RPubs. Another aspect that attracted all participants to #TidyTuesday was that it is open

for individuals of all skill levels, which helps achieve Wenger et al. [Wen02b]’s design principle to

invite different levels of participation for growth of a CoP. Moreover, because the tweets are “easy

access and public” (C20), it also satisfies Jones [Jon97]’s requirement that a virtual settlement should

include a common-public-place where members can meet and interact.

However, there were participants who only contributed once or twice which suggests potential

barrier of entry issues. P10, P25, P5, and P4 all had similar reasons as to why they haven’t posted

more submissions on Twitter. P5 and P10 did not post more submissions simply because they did

not having enough time. P4 also had time constraints but they also explained that they spent a long

time figuring out exactly what they wanted to do with datasets, and would’ve preferred some ideas to

help her get started. P25 differs from the rest because they were not satisfied with the #TidyTuesday

visualization that they worked on and therefore decided against sharing it.

Asynchronous submissions: We also found that participants were motivated by the fact that

the project does not require any deadlines for a particular #TidyTuesday. All of the posters stated

in one form or another that this asynchronous nature of the project offered flexibility. Because

#TidyTuesday submissions don’t have deadlines, several participants expressed that they felt less

pressure finishing it on Tuesday (P4, P6, P11, P16). Sometimes the reluctance to participate on a

certain week was because they “couldn’t find anything interesting about [the dataset]” (I22). If they

couldn’t practice on a dataset a certain week, participants were assured by the fact that they could

36

always try the next #TidyTuesday. One participant even coined a new hashtag called #TardyTuesday

to convey the fact that they don’t usually complete their submission on Tuesdays:

“I think I coined Tardy Tuesday for a while because I never do them on Tuesdays. I get

that if you do it on Tuesday, it’s very defined and it’s done. But Tuesday’s a rough day of

the week. I think on Thursday, I’d be more like able to sit down and do it but on Tuesday

I’m either behind on something I need to have done or something else.” (P16)

4.4.1.2 Curated datasets for a time-limited activity:

Participants expressed that it was important that they had access to datasets every week that were

manageable and could be timeboxed—allotting a fixed, maximum unit of time for an activity.

As Sutton et al. [Sut18] have noted, large datasets can present multiple problems leading to “death

by a thousand wranglings”. Several participants (P6, P7, P16, I22, I17, I15) described that the datasets

hit a “sweet spot” (I15) in terms of the size, making them attractive for a quick analysis. This aligns

with all of the participants’ treatment of #TidyTuesday as a side activity for extra practice. These

manageable datasets allowed participants to limit their practice sessions yet be able to do exploratory

analysis and visualization on interesting datasets “and be done with it in two or three days” (I22).

I15 provided a nice explanation of these characteristics of the #TidyTuesday datasets that attracted

them:

“There’s a sweet spot. You need to have a dataset that answer a variety of questions. It

might be between—I would say between—a thousand and a million rows is about the

right size for Tidy Tuesday. In fact, it’s usually less than a hundred thousand. You could

do more but it’s still the right area. You could download it quickly and analyze it. And

the number of columns between 5 and 20. And if you jump into datasets in the wild, a

lot of them won’t look like that.” (I15)

4.4.1.3 A weekly rhythm to stay engaged:

Participants were also interested in the “rhythm” (I18) and/or consistency provided by new datasets

released every week. P3 described the “burst” of activity on Tuesday and throughout the week, which

is reflected in Figure 4.3 where there’s a flurry of tweets on Tuesday, with lesser tweets the following

days.

The #TidyTuesday activity provide “aliveness”, a key component to cultivate CoPs identified

by Wenger et al. [Wen02b] as an indication that the project is active to attract newcomers. Indeed,

the “consistent delivery of a dataset every week” (I15) attracted participants with either the “ac-

countability” (P3, P4, P11) factor or as a source of “inspiration” (P3, P16, I17, I22), to help them

maintain their engagement with the project and form a practice regimen. Regardless of skill levels,

the participants described they needed this routine to stay consistent with their practice.

In addition to rhythm, participants were also motivated by the anticipation of working with

new and different types of datasets every week. For example, P3, P12, and C20 described feeling

37

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day of Week

200

400

600

800

1000
N

um
be

r o
f T

w
ee

ts

Figure 4.3 Number of #TidyTuesday tweets each day of the week from April, 2018 to Jan, 2020.

excited about the new dataset for each week, as well as the different types of analysis or visualization

that were possible. P3 added that they were inspired by the intricate and diverse visualizations

every week. Part of that is thanks to a core set of “super-posters” [Gra14] like I17 and I15, who

consistently maintained high levels of posts (47 and 73 posts, respectively) with creative approaches

on visualization datasets. Just like Cranshaw & Kittur [Cra11], we found this leadership helped

participants (P8, C20, I22, I23) motivate themselves to begin making their own contributions.

4.4.1.4 Improve technical and communication skills:

All participants were interested in using #TidyTuesday to hone their technical and communication

skills, or repertoire [Wen99], and build an online presence. In particular, learning was the most

common intrinsic motivation between all participants, similar to developers in open source software

by Ye & Kishida [Ye03]; participants in our study wanted to engage in “exploratory learning” and

“learning by doing”. For those who were just getting started with R (P2, P6, P7, P8, C20), traditional

resources like classes, MOOCs, online tutorials or books were insufficient in providing adequate

practice. They described #TidyTuesday as a push for improving their data science skills and improve

their technical abilities to deal with real-world datasets instead of toy datasets built into R datasets.

Those who were already familiar with base R were interested in polishing their skills around the

tidyverse style of R (P6, P9, P16, C20, I17, I22, I23) or pushing their data visualization skills. These

participants either wanted to get familiarized with tidyverse packages or build on skills they don’t

normally get to exercise:

“I learned R before the tidyverse and then I was like, “Oh I should probably learn the

tidyverse, I’m getting a little bit passé.” So I went through all the main packages and was

teaching myself the differences between base R and whatever like dplyr, purrr—all that

38

stuff. My least favorite thing is actually making plots and ggplot is my nemesis so I was

like okay this is perfect because it makes me practice making plots.” (P16)

Participants (P2, P4, P16) were also interested in using #TidyTuesday as a forcing function for

improving communication skills through blogging, making screencasts, or building a data visualiza-

tion portfolio. This motivation has both intrinsic and extrinsic counterparts: participants wanted to

improve their own personal skills while attracting the attention of others in the community and

potential employers. They were also interested in data visualization techniques that they weren’t nor-

mally used in their job. Influencers (I17, I22, I23) treated #TidyTuesday as a challenge to continually

push the limits of data visualization skills using packages like ggplot2.3

4.4.1.5 Connecting and engaging with the R community:

Finally, all of the participants were motivated to participate because they wanted to become part of

a community and engage in social learning. Similar to the motivation to improve their communica-

tion skills, participants had both intrinsic and extrinsic reasons to connect with the R community.

Within McMillan & Chavis [McM86]’s sense of community (SoC) theory, they were seeking mem-

bership (feeling a sense of belonging) and fulfillment of needs (learning skills from others). For

example, P2, P6, P16, and P9 described #TidyTuesday as a good motivator for both fitting into the R

community and learning valuable skills from others:

“It helps learning a lot easier especially if you’re trying to do it on your own. You’re not

really alone because you’ve got other people out there on Twitter or wherever sort of

learning as well. I think the great thing about it is that it’s this place where you sort of

learn with other people even if you’re not physically in contact with them.” (P6)

The level of involvement participants wanted with the community was dependent on the partic-

ipants’ skill level and goals. Some of the posters and curators were newcomers to the R community

(P8, P12, P16, P3, C20) who were motivated to join #TidyTuesday to absorb best practices and the

norms of the R community, and increase their public presence online as part of their professional

development. Put another way, #TidyTuesday became a way to audition for the R community on

Twitter: “I wanted to be a part of the R community first, and Tidy Tuesday with the visualizations

was like a way to get there” (C20).

The influencers who were already immersed in the R community were more interested in

using #TidyTuesday as a way to “give back to the community” (I14, I15, I17, I22, I23) and helping

newcomers have a welcoming experience. This fits under the SoC theory definition of influence,

making a difference to a group. For example, I14, I17 and C13 were interested in fostering the

welcoming culture and helping Thomas build the movement by participating themselves. For

example, I17 accomplished this by participating heavily in #TidyTuesday to grow the movement

and try to welcome beginners who are new to the project:

3https://ggplot2.tidyverse.org

39

https://ggplot2.tidyverse.org

“Self-motivated or self-directed learning is pretty easy for [some people]. But, I know a

lot of people where they feel isolated, and it feels challenging for them. I just wanted

to help. I saw the community and saw what was there and thought, “Hey this is neat,

everyone’s helpful and how can I help people learn R?” because if I help others learn R,

I’ll learn more R. I’ll polish my skills and be a helpful guide in the community.” (I17)

4.4.2 What do participants gain by participating in Tidy Tuesday?

#TidyTuesday transformed all of the participants regardless of their skill level both in regards to skill

and professional development as well as getting more involved with the R community in general.

We discuss these themes below and summarize them in Table 4.3.

Table 4.3 High level themes on the impact of #TidyTuesday

Theme Representative Examples
Enhancement of skills through LPP
(Section 4.4.2.1)

“I love looking at other people’s vi-
sualizations and then reading their
code and getting ideas on how I
would build off of that.” (P3)

Hashtags aided information retrieval
(Section 4.4.2.2)

“I think I saw someone like have a
package about you can make a gif
or something and I was like wow
that’s a really cool package.” (P4)

Expansion of skills outside of occupation
(Section 4.4.2.3)

“Essentially, I just want to try some
of the plots I don’t get a chance to
do in my research work.” (P9)

Building an online presence for the job
market
(Section 4.4.2.4)

“The way I got that job was be-
cause I had all these blog posts and
Tidy Tuesday stuff.” (P16)

4.4.2.1 Enhancement of skills through legitimate peripheral participation:

All participants commented that reading others’ #TidyTuesday code and visualizations helped them

enhance their own technical and communication skills. Having access to others’ work through

their tweets and GitHub links facilitated legitimate peripheral participation for all participants, an

important component of situated learning [Lav91] that helps explain how newcomers observed the

project initially, then slowly participated by posting their own tweets. For example, P1, P3, P4, P11,

and I22 practiced reverse-engineering skills by reusing and modifying others’ code while working

on their #TidyTuesday submission. Marlow & Dabbish [Mar14] noticed the same social learning

mechanism in designers using Dribbble. Influencers like I22, I17, and I23 were pleasantly surprised

by how posters “borrowed and extended” (I17) their code, giving credence to the effectiveness of

40

sharing code to transform peripheral members into experienced members. Since participants are

primarily motivated by learning, this is in contrast to competition-fueled settings like Kaggle, where

only a small minority of medium skill-level members shared and re-used code [Tau17].

Through #TidyTuesday tweets, participants also formed impressions about others’ skills and

their commitment to the project which helped them keep track of those with similar interests

or skill-sets. This parallels Dabbish et al. [Dab12] and Marlow et al. [Mar13b]’s studies of GitHub,

where they also found impression formation mechanisms using visible cues on GitHub like user

profile and commits. We see similar visible cues with twitter profiles, tweets, and the visualizations.

Among influencers like I17, I23, and I22, this enabled both learning “creative approaches” (I22) to

visualizations and igniting “friendly competition” (I22). #TidyTuesday became a social learning tool

for all skill levels to get inspired by others on what is possible with R and anticipate future posts

from them:

“I love looking at other people’s visualizations and then reading their code and getting

ideas on how I would build off of that, but I haven’t done a lot of them from scratch

myself. I learn off of other people’s awesome ideas that they share. Yeah that’s a big

part of it for me: I’m not looking to necessarily practice my skills as much as I am to be

inspired and know what I can do based on what other people share.” (P3)

4.4.2.2 Hashtag as an information retrieval and R package discovery tool:

All participants mentioned that the #TidyTuesday hashtag allowed them to easily search for others’

tweets and discover new packages in R. This need for searching others’ submissions became such a

common task, that a web application tool called Tidy Tuesday Rocks4 was built to aggregate tweets

and make them accessible in a central website. The hashtag made it possible to build the web app

which helped participants (P4, P9, C20, I22, I23) search for past submissions that get buried due to

high volumes of tweets or are difficult to find via Google searches:

“I’ve also used it to drill into the code, lift that off, and use it in my own. One of the maps

I found on Tidy Tuesday rocks and I clicked [their]GitHub code and I was like, “Oh here’s

how [they] did it!” You see so many pages that are so heavily indexed over so long in

Google that it’s like really impossible to find what people are doing these days. I know

that these things are recent because people did them over the last couple weeks.” (C20)

As C20 points out above, the #TidyTuesday hashtag became useful to find examples of R code

that best reflects modern packages and techniques. In this way, the #TidyTuesday hashtag helped aid

information retrieval and achieves Wenger et al. [Wen02b]’s “design for evolution” recommendation

because it allowed aggregation of tweets based on the hashtag. Since the #TidyTuesday tweets were

continually updated every week, participants were able to discover modern R packages that they

had never used before:

4tidytuesday.rocks

41

tidytuesday.rocks

“I find it a really good way to practice and try out new packages I’ve never used before. For

example, for first time, I used the gganimate package for animating a plot, or ggalluvial

package for doing flow diagram or alluvial plot.” (P6)

4.4.2.3 Expansion of skills outside of an occupation:

#TidyTuesday participants used the project to explore data visualizations that they don’t normally

get to make in their day-to-day job (P16, C20, I15, I17, I22, I23). Given the diversity of the datasets

and the multiple ways of analyzing and visualizing them, #TidyTuesday became a “choose your own

adventure game” (I17), which allowed participants to “pursue something really weird” (P16) beyond

traditional visualizations:

“With my job, it’s often kind of like longer-term projects. We’re focused on this one

specific thing. So in a given week, I’m not going to be working on mapping and NLP

and animation and machine learning and stuff like that. So, it’s kind of cool to have a

different little thing to play with every week.” (C19)

R veterans like I22 and P9 commented how having access to the visualizations others produce

also allowed them to challenge themselves and produce their own unique take on visualizations.

“I made a tree map just because it was really interesting. I think I got delayed and then

came back like half an hour later and I was like “oh no some people have already used

that idea!” But the only difference is you cannot interact with the tree map, and I thought

I’m just going to add some additional things to it because it’s gonna be boring to see

two identical tree maps with different colors.” (P9)

Beyond R programming, the curators were able to use #TidyTuesday as a forcing function to

improve other skills which was the same theme in Fiesler et al. [Fie17]’s study of an online fandom

community. For example, C20 and C21 were able to use #TidyTuesday to showcase their skills

making tools that help others find tweets or understand others’ code. C13 learned how to start and

maintain a podcast and its respective website, while C24 learned how to use screencasts for covering

#TidyTuesday submissions.

Improvement of communication skills with both written and other media. Several partici-

pants also used #TidyTuesday to polish their communication skills through blog posts or screencasts,

which as a side-effect gave others opportunities for social learning. Often times, participants would

expand on their thought process behind the code and visualizations in the form of blog posts (P2,

P4, P6, I22, I17, I15, I18). The blog posts helped improve the participants’ communication skills, as

well as reveal the decisions made behind the code or plot. Influencers like I15 and I18 decided to

make screencasts to improve their communication skills and help others learn about how to read,

wrangle, analyze and visualize datasets. This helped them improve their own communication skills,

while providing additional learning resources for newcomers via LPP [Lav91]:

42

“The barrier to making a screencast is low. We already have quite an amount of written

material. So using screencasts as an opportunity of getting another kind of medium out

there and show how to use some of these open source packages was a good idea. Tidy

Tuesday is a great example of another kind of content, and there are people out there

who like watching videos and learn that way.” (I18)

4.4.2.4 Building an online presence for the job market:

There were many participants who used their #TidyTuesday submissions to build a portfolio for

data analysis and visualization (P2, P6, P9, P16, P26, C20, I15, I22, I23). As mentioned earlier, some

participants wrote corresponding blog articles on their personal website. We found that tweets, blog

posts, and visualization portfolios around #TidyTuesday provided the same transparency and acted

as signals for employers as found by Marlow & Dabbish [Mar13a]with activity traces and visual cues

on candidates’ GitHub profiles. By posting their work online either on Twitter, GitHub, YouTube or

their personal sites, several participants (P2, P9, P16, I15) were able to attract recruiters and were

offered interviews or jobs:

“I wrote a post and I think a couple weeks later, there was a consulting firm on the East

Coast. They’re primarily doing a project in healthcare and they called me and said, “Hey

we saw your interactive [plot] on Twitter and we would like to get to know you. We feel

like you’re gonna be a good fit for one of the senior consultant positions.” I was like sure!

I was really surprised that everything kind of happened because of that one tweet!” (P9)

This online presence even benefited experienced data scientist like I15, who made #TidyTuesday

screencasts which employers used as convenient indicators of expertise:

“It’s been awesome from an interviewing standpoint. People say how do you analyze

your datasets. I’d say if you want to find examples, they are on YouTube. I did have one

hiring manager who watched it all the way through and it definitely went well.” (I15)

4.4.3 How does social activity around Tidy Tuesday cultivate a community of practice?

We found #TidyTuesday and the social interactions afforded by Twitter helped crowdsource knowl-

edge, disseminate best practices in R, bootstrap offline events, and build an inclusive, welcoming

community. We present the high level themes below and summarize them in Table 4.4.

4.4.3.1 Promoting modern R practices:

The #TidyTuesday project encouraged the use of the tidyverse packages, which were created to

provide R with consistency and ease of use based on the idea of tidy data [Wic14]. Although all of

the participants were familiar with this new style of R programming called tidy R, many had not

made the transition yet. For example, P11, P6, P16 had significant experience in base R and made

the transition to tidy R through #TidyTuesday:

43

“It’s funny. Up until about a year ago, I honestly was on the base R side. But tidy R, it’s

so clean! I am fully committed now. I switched all my classes this last year to teaching

tidy R in my undergrad classes too. There’s just so much energy and effort that’s being

put into those packages and I think that’s just like how it’s moving. I still use [base R]

but I moved almost completely away from for loops and things like that which I was

completely attached to up until about a year ago. I would say really within the last year,

I transitioned to being a more tidy coder.” (P11)

Table 4.4 High level themes on community building

Theme Representative Examples
Promote best practices
(Section 4.4.3.1)

“Up until about a year ago, I honestly
was on the base R side. But tidy R,
it’s so clean like I am fully committed
now.” (P11)

Curation to satisfy community needs
(Section 4.4.3.2)

“I just kind of started annotating stuff
for myself and then I realized, oh I bet
other people would find this useful
too.” (C19)

Bootstrap offline events
(Section 4.4.3.3)

“Bringing Tidy Tuesday from Twitter
and grounding it in real life as hacky
hours made sense.” (P3)

Promoting an inclusive, welcoming com-
munity
(Section 4.4.3.4)

“On Twitter I’ve kind of had to come
out of my shell to post stuff but every
time I posted things or interacted with
people, they’ve just been so wonder-
ful and supportive.” (C19)

Through #TidyTuesday, participants adopted tidyverse packages like dplyr for data wrangling

or ggplot2 for visualization, which can be considered modern coding practices of R due to its

rising popularity. Zhu et al. [Zhu16]’s study of Wikipedia found that adapting best practices are

helpful when the target audience has had some experience already. Thomas Mock and the initial

contributors like I17 were already versed in tidy R, and since most participants were at least familiar

with the new style of R programming, it proved an effective promotion strategy. #TidyTuesday on

Twitter supported “trendspotting” (continued development by keeping up) that Marlow & Dabbish

[Mar14] discovered in their study on Dribbble.

4.4.3.2 Curation as a means to solve rising community needs:

The curators of #TidyTuesday have played a crucial role in enhancing the project and satisfy-

ing McMillan & Chavis [McM86]’s sense of community requirement of “integrating and fulfillment

of needs” of the community. It also reflects the tendency of curation by the R community in other

44

channels like Stack Overflow and R-help mailing lists [Zag16], but adding new types of knowledge

artifacts like web applications and interactive documents. In response to rising community needs,

curators (C13, C19, C20, C21, C24) helped create packages and tools around # TidyTuesday related

to organizing tweets, highlighting submissions, and walking through code.

Two packages were made to make dataset retrieval easier for any given week, and a web tool

for browsing past submissions in useful ways. The tidytuesdayr package makes it easier to ac-

cess #TidyTuesday datasets without leaving the RStudio IDE (Integrated Development Environ-

ment) [Rsta] by requiring a single line of code to load the right dataset from a particular week:

tt_data <- tt_load("2019-01-15"). This solves the potential challenge for loading data, es-

pecially for beginners. Since it is difficult to search for tweets and remembers specific plots, a web

application called Tidy Tuesday Rocks5 allowed the community to browse past submissions by

dataset or username. This tool also served as an “R gallery collection” (C20), which further inspired

several of our participants (P3, P11, I17, I22).

To highlight past submissions and walking through others’ code, curators created #TidyTues-

day code walk-throughs, and a podcast. The package called flipbookr [Rey] was created as an

interactive slide document designed to walk through ggplot2 code, line-by-line on #TidyTuesday

techniques. Similarly, a project called #TidyX [Hug] was recently created to provide screencasts

reviewing past submissions and explaining the code step-by-step, as well as pointing out R packages

and techniques for data wrangling and visualization. There are also annotations for #TidyTuesday

screencasts which help viewers jump into specific timestamps for information about a particular R

function or technique.

4.4.3.3 Bootstrapping offline events to provide engagement for learners:

Perhaps the most surprising use of #TidyTuesday was bootstrapping in-person events. Some par-

ticipants (P3, P9, P11, P12) used #TidyTuesday datasets to facilitate in-person events. P9 used

#TidyTuesday for organizing a hackathon meetup at their university, which they described as a

“pain-free process” because #TidyTuesday gave them easy access to the curated datasets. P3 and

P12 started a weekly social coding club called “hacky hours” for students at their university holding

in-person meetups to alleviate students’ fear of programming, and provide them with a welcoming

learning space:

“I thought it was really important to have an activity or a place where students could

just try different things and try learning functions in a social setting that is totally no

stress. Or if they fail completely, that’s fine and hoping that they would learn something

and progress while having fun. So Tidy Tuesday seemed like the perfect thing to kind of

center that goal and so we started our in-person Tidy Tuesday last spring. We’ve been

sticking with it pretty much every Tuesday since during the academic year!” (P12)

Similarly, P11 started a #TidyTuesday meetup with students at their university for similar benefits.

5http://tidytuesday.rocks

45

http://tidytuesday.rocks

However, for P11, they had never worked on #TidyTuesday by themselves and started doing them

with a group. P3, P11, and P12 all prioritized mentorship of students, encouraging experienced

members to help the beginners in the group. This echoes the theme of enabling LPP for learners

in Section 4.4.2, but in an offline setting:

“I spend the majority of the time helping others, less so working on my own plots

because I wanted to facilitate learning. I’m trying to encourage some of the more senior

graduate students now to take that role away from me a little bit more so that they can

practice teaching others and starting to feel more comfortable teaching some of the

newer graduate students and helping them decode issues.” (P11)

These experiences add a new perspective on Gruzd et al. [Gru11]’s study on Twitter as an imagined

community and Wenger et al. [Wen02b]’s design components on cultivating CoPs. #TidyTuesday

not only propped up an online CoP, but also facilitated in-person meetups, helping reduce efforts

behind finding datasets, promoted learning via LPP, and allowed organizers to focus their efforts

solely on logistics—setting up a calendar, planning the events, and choosing the locations. In

effect, the in-person meetings combined the whole-community gathering taking place online

(Twitter) which extends Gruzd et al. [Gru11]’s finding that Twitter can be an imagined community,

but complemented an offline small-group gathering (meetups), which adds an additional layer of

rhythm and meets [Wen02b]’s recommendation of public and private community spaces.

4.4.3.4 Promoting a welcoming, inclusive community:

The #TidyTuesday community welcomed people of all skill levels, coming from very diverse back-

grounds, creating an online space to practice R together. All participants felt they felt welcomed into

the larger R community through their participation in #TidyTuesday. Thomas played a large role of

ensuring that newcomers felt welcome, and shaping positive behavior for #TidyTuesday through

his moderation and example-setting:

Thomas expressed that he wasn’t as focused on deterring certain behavior, but setting examples

of positive behavior with his friendly replies on Twitter. This strategy has worked for #TidyTuesday

and is backed by Seering et al. [See17]’s finding that users tend to imitate both pro- and anti-social

behavior. Participants (P5, P8, P12, C20) described the immediate contrast when asking questions

in other online channels Stack Overflow compared to asking on Twitter. The following sentiment

resonates with Ford et al. [For16]’s study on barriers for participation on Stack Overflow which

revealed that askers were hesitant in participating because they feared not receiving an answer back

or receiving negative feedback:

“With Stack Overflow, everybody is looking to get points so you’ll get people who will

either not give great answers, but they want to get a point in, or you also get people

who are very rude and very standoffish. If you ask how do you do something, instead of

telling you an answer or how to get the answer, they’ll kind of more or less insult you. We

46

Figure 4.4 An example of Thomas welcoming a newcomer to #TidyTuesday.

know Twitter to be a very volatile place, but for whatever reason with the R community,

it wasn’t. People were always very helpful, always very nice and I just enjoyed it a lot

more.” (P8)

Despite only receiving passive feedback of likes or retweets, several participants (P6, P16, C19,

C20) were surprised by the amount of positive feedback from the community. Within the SoC

theory [McM86], by participating and receiving feedback, participants felt membership (feeling

like they belong) and influence (mattering to its members). For example, P16 was encouraged to

continue posting more #TidyTuesday tweets because they weren’t used to receiving such feedback

in their academic setting:

“I think mutual support of just like every time I get a like, I’m like, “oh somebody thinks

that I did something cool!” I think that’s the big thing in grad school that you also don’t

get—positive feedback frequently. So I know it’s dumb to smile when I get a like on my

tweet but I do.” (P16)

Sometimes, there was an “happy accident” (Thomas) of interactions between participants and

highly renowned data scientists in the R community. For example, P11 recounted how Hadley

Wickham liked one of their students’ #TidyTuesday post on Twitter, which was very encouraging for

the student.

#TidyTuesday also helped several participants increase their online presence. Through their

contributions in #TidyTuesday, P3, P11, P12, and C19 dramatically increased their online presence

and made an impact by helping others get involved with #TidyTuesday. P3, P11, and P12 commented

that #TidyTuesday helped them mentor students and encouraged them to become more active

47

online and reduce their fear of sharing work online, especially for those who were introverted.

For C19, they described their transformative experience when they shared their annotations of

#TidyTuesday screencasts with the R community on Twitter:

“I’m a pretty introverted person so even on Twitter I’ve kind of had to come out of my

shell to post stuff, but I mean every time I posted a #TidyTuesday tweet or interacted

with people, they’ve just been so wonderful and supportive. I’ve never seen any place

on Twitter where people say, “This is so helpful! Thank you! Great job!” It’s so amazing

that the people are like this on Twitter. So it’s been just a wholly positive experience.”

(C19)

4.5 Discussion

In this section, we discuss benefits and challenges behind #TidyTuesday and provide both the R

community and similar communities with guidelines on how to effectively use a daily hashtag to

build an online community of practice. The guidelines fall under three broad categories: barriers to

entry for beginners, technological improvements to facilitate better learning, and social interactions

to form and sustain a welcoming, inclusive online community.

4.5.1 Lowering the barriers to entry

In the following subsections, we discuss some barriers to entry for #TidyTuesday and provide

suggestions on how to provide better onboarding.

Can I participate? There were some data scientists who didn’t realize #TidyTuesday was designed

for everyone or weren’t clear on the skill requirements to participate, even though everyone was

welcome. For example, one programmer with minor experience in R asks:

“People who participate in #TidyTuesday: how much experience with R/coding in gen-

eral did you have before doing it the first time? I’ve tried to do this week’s task but I’m

finding myself pretty lost.”6

This tweet suggests a barrier to entry issue related to getting started in #TidyTuesday, and the

implicit skill requirements for a beginner. Steinmacher et al. [Ste15] identified several relevant so-

cial barriers that stops students from participating in open source software (OSS), which included

barriers like “newcomers need orientation” and “technical hurdles”. Potential #TidyTuesday mem-

bers might have difficulty knowing what skills they need to participate, which has been noted as a

problem in Cranshaw & Kittur [Cra11]’s study of Polymath Project, an online collaboration between

mathematicians solving open problems. P4 suggested including beginner prompts for datasets

about potential actions or questions the analyst can explore which addresses the barrier of “finding

a task to start with” [Ste15]. As for “technical hurdles”, beginners in #TidyTuesday might face the

6https://twitter.com/scottjdavies01/status/1201751167782408192

48

https://twitter.com/scottjdavies01/status/1201751167782408192

challenge of the tooling required for #TidyTuesday, such as Git/GitHub for code sharing. To help

lower this potential barrier to entry, P12 suggested a small tutorial for learning the bare minimum

required for Git/GitHub. Learning resources are linked at the bottom of the Tidy Tuesday GitHub

Readme file, but it might make the resources more visible if placed at the beginning, so that a

newcomer can better orient themselves to the project.

Reduce fear aversion for novices. Beginners wishing to participate might also suffer from a case

of fear aversion after witnessing intricate code and stunning visualizations produced by experts.

These submissions could either inspire or hurt learners. To reduce this fear, a possible remedy is

for experts to point out they are also learners who sometimes struggle to produce visualizations

for #TidyTuesday. As discussed in Section 4.4.2.1, some of the posters included a blog article or a

screencast corresponding to their submission to provide further explanation behind the code and

the plots. We believe these “learning out loud” (I14) activities done by experts can help beginners by

highlighting the gradual, incremental steps taken towards producing those complex, creative plots:

“Those [blog posts] are awesome because people think that [experts] easily come up

with these polished, awesome work. What the plots doesn’t show is that, ‘No, we failed

and we did like 1500 experiments to get to where we are’ or ‘there’s like a pile of sketches

on paper on my desk.”’ (I17)

We observed this initiative to blog and record screencasts only among a few of our participants

(P4, P16, C24, I22, I15, I17), who were specifically interested in enhancing their communication skills

(Section 4.4.1). We agree with C20 in encouraging experts in the community to learn out loud to help

newcomers feel more comfortable participating in online social coding projects like #TidyTuesday.

4.5.2 Better mechanisms for practice and learning

Provide diverse forms of resources. #TidyTuesday was effective in sharing knowledge and building

an online CoP primarily because participants championed the idea of code-reuse and explana-

tions through tweeting, blogging and making screencasts. Participants provided external, in-depth

explanations in the form of blogs (P4, P6, P16, I17, I22) or screencasts (I15, I18). As we discussed

in Section 4.4.2, only the influencers made #TidyTuesday screencasts, and it’s important to note

that they are experts in R. C20 and I22 suggested encouraging shorter screencasts to nudge the less

experienced members of the community to take part creating video formats to showcase tips and

tricks in R to further promote social learning:

“Stepping through somebody’s code doesn’t quite get you there. You don’t get to hear

their design choices or like why they split it up and into these two different things. I

would love for the people who are creating these super stellar visualizations to take

10-15 minutes and go back and describe how they got there.” (C20)

Faas et al. [Faa18] have found that live stream coding can support the growth of learning-focused

communities that mentor both the streamer and each other during and after streams. Influencers

49

such as I15 and I18 have provided screencasts which can help learners pick up “tricks in R” (I15).

Live streams could further enhance the learning experience by allowing questions in-situ, a feature

which blog posts and pre-recorded screencasts lack.

Twitter as a platform to promote friendlier learner interactions. The Twitter platform pro-

vided a friendly experience for #TidyTuesday to learn and practice R, compared to other channels

like Stack Overflow or R-help mailing lists. For example, beyond questions and answers, Twitter

replies can initiate discussion threads which are discouraged on Stack Overflow, while still allowing

“participatory knowledge creation” [Zag16]. Unlike the aggressive behavior found in R-help mailing

lists, #TidyTuesday participants found very little aggression on Twitter, a surprising finding that

we will further discuss in Section 4.5.3. All participants expressed that the R community on Twitter

(via #TidyTuesday and #rstats) has a welcoming attitude towards beginners, allowing follow up

discussions and simple questions without any fear of scorn or negative comments. I14 pointed out

that “this was not always the case” and the leaders of the R community such as R-Ladies Global

and RStudio have helped changed the culture. However, I14 also expressed caution that R-specific

community forums—such as RStudio Community7—could potentially lead to the “posting is hard”

barrier to entry on Stack Overflow [For16] by requiring questions to be structured a specific way (for

e.g. using a reprex8 for a reproducible example). We suggest the R community and other online

communities to consider SNS sites like Twitter to form a community of practice that allows casual

dialog, ongoing discussion threads, and friendly interactions.

Limitations of Twitter as a platform for online learning. While #TidyTuesday participants re-

ceived positive feedback, they did not always provide constructive feedback. Kou & Gray [Kou17]

studied distributed critique, a set of critique practices whereby geographically distributed creators

engage in the critique of design artifacts and processes. We sometimes see evidence of this type of

interaction (Figure 4.5). However, constructive feedback was rare among our participants. There has

been an attempt to resolve this with a related hashtag called #RFeedbackFriday, to explicitly ask for

feedback, but P6 commented, “I tried it but did not receive any feedback and it may have fizzled out.”

Another online CoP for healthcare has encountered similar difficulties on Twitter [Gil16]. Twitter is a

public space and restricts tweets to 280 character limit, so it may stifle meaningful feedback required

by learners because of a fear of publicly criticizing others, or not allowing depth. We echo Wenger

et al. [Wen02b]’s suggestion for a “backchannel” for private conversations might help to provide

deeper interaction between members of the community, using applications like Slack.

Better infrastructure to facilitate feedback and mentorship. To better facilitate deeper inter-

actions between learners and mentors, we believe a better technology infrastructure is required that

explicitly focuses on receiving feedback and mentorship. C21 engaged in the #MakeOverMonday—a

daily hashtag for visualizations using Tableau—and expressed how the project has a central site that

is used for critique by experts in a webinar. Such efforts require time, energy and funding which is

beyond the scope of a voluntary effort like #TidyTuesday. However, we suggest taking advantage

7https://community.rstudio.com
8https://reprex.tidyverse.org

50

https://community.rstudio.com
https://reprex.tidyverse.org

Figure 4.5 An example of constructive criticism on a #TidyTuesday submission tweet.

of a central place like the #R4DS online learning community on Slack, which could help support

the one-on-one conversations, or Ford et al. [For18]’s just-in-time mentorship learners to inform

cultural norms. Alternately, one could draw inspiration from Xu et al. [Xu14]’s system Voyant, which

allows users to get feedback of their designs from the crowd. A similar system could be re-purposed

for data scientists so that they can receive feedback on their plots or code.

4.5.3 Organically growing an online learning CoP

Choose technologies that support an open structure for growth. We believe a big part of the suc-

cess behind #TidyTuesday was Thomas’ decision in keeping the core structure of the project loose—a

weekly dataset and a few rules to participate—yet allowing others to build on the project by making

it open source. In other words, Thomas “designed for evolution” which is recommended by Wenger

et al. [Wen02b] to organically grow a CoP. #TidyTuesday accomplished this well by choosing the

right technologies: Twitter and GitHub.

Hosting #TidyTuesday on GitHub helped Thomas maintain the project for free and make use of

crowdsourcing efforts for finding new datasets, fixing problems regarding those datasets, or making

improvements to the project. Through GitHub’s issues, Thomas was able to get help on fixing

uploaded datasets9, or project-related resources like information in the documentation10. However,

P16 pointed out that a potential issue for a single moderator is burnout, a state of exhaustion

caused by excessive and prolonged stress. This is similar to the burnout identified by Fiesler et al.

9https://GitHub.com/rfordatascience/tidytuesday/issues/186
10https://GitHub.com/rfordatascience/tidytuesday/issues/162

51

https://GitHub.com/rfordatascience/tidytuesday/issues/186
https://GitHub.com/rfordatascience/tidytuesday/issues/162

[Fie17] for experienced coders, which can be an issue for a project maintainer. To combat this,

P16 suggested adopting the idea of “RoCur” or Rotating Curator: rotating the spokesperson on a

social media account, where every week, a different member of the community manages the Twitter

account, sharing their their views on using R, as well as tips and tricks. This is directly inspired by

the @WeAreRLadies11 effort out of the R-Ladies Global. For #TidyTuesday, a RoCur candidate might

be a highly motivated individual such as a super-poster [Gra14], a curator or an influencer, to help

curate/clean a dataset and interact with and promote others’ tweets.

As mentioned in Section 4.4.2, using Twitter as the sharing platform for #TidyTuesday submis-

sions enabled curations of various forms. Firstly, the hashtag tagging mechanism helped grow the

movement by supporting information retrieval (Section 4.4.2.2), accruing knowledge and form-

ing links to various learning resources. Hashtags became such a useful mechanism for growing

#TidyTuesday that it sprung two new daily hashtags from our participants (#TardyTuesday and

#Tidydors). Having access to submissions via Twitter also allowed curators to organize the tweets

and/or artifacts produced by posters as well as provide further pedagogy on particular submissions

for learners. As the project evolved, members started becoming aware of particular challenges

of #TidyTuesday and sought to improve the project using their skills outside of R programming

alone. Since Thomas welcomed anyone to help fulfill these needs, some members in the community

jumped on the opportunity. For example, in Section 4.4.2, we mentioned the benefits of having

access to others’ code but passively reading code might not be helpful for learners. Curators stepped

in to solve this issue by either highlighting specific packages and techniques (C13), walking through

the code line-by-line (C24), or showing the incremental evolution of the code (C21).

To maintain and sustain the growth of an online community, we encourage keeping the core

structure loose, and choose technologies that can help promote contributions and promote cura-

tions to enhance the project.

Encourage experts and influencers to engage with newcomers. The success behind #TidyTues-

day in fostering an inclusive, welcoming online community of practice on Twitter owes a large part

to the involvement of Thomas, influencers and other leaders within the existing R community. At the

rstdio::conf 2020 [Rstc], Kate Hertweck delivered a a talk about how R communities are unparalleled

in their inclusivity and commitment to learning collectively [Her20]. She noted several solutions to

reduce barriers of entry like managing expectations and creating interest through expectation of

activity and continuity. We believe Thomas has accomplished expectations by simply promising a

dataset every week, leaving the task of analysis and visualization open-ended. Thomas also used

the #TidyTuesday hashtag to create rhythm (Wenger et al. [Wen02a]) within the community and

helps create what Kate recommended as “FOMO”, the fear of missing out.

We also want to highlight the importance of the larger R community and the key players men-

tioned in Section 4.2.3 which provided a solid foundation for promoting inclusivity and diversity of

members for #TidyTuesday. With the existing #rstats and #R4DS communities on Twitter, which

11https://twitter.com/WeAreRLadies

52

https://twitter.com/WeAreRLadies

embraces this culture promoted by stakeholders like RStudio, R-Ladies Global, rOpenSci12, Thomas

was able to carry this spirit forward with the #TidyTuesday project by example-setting positive

behavior [See17]. In a recent tweet, a user asked:

“I’m curious as to how the R community came to be so supportive and welcoming (as

opposed to so much of the tech world). Anyone have ideas? #rstats”13

A number of responses followed including Hadley Wickham and Jenny Bryan who provided

an insight as to why Twitter is becoming a welcoming and inclusive space for the R community.

Hadley commented “that this wasn’t at all the case 10 years ago” and that perhaps “each shift to a

new space (r-help -> SO -> twitter) can be accompanied a refocusing of shared goals” or “it’s just

dominated by founder effects and shifts tend to be led by younger folks who are more in touch with

initial pain of learning.” Indeed, in Section 4.4.3.4, we mentioned how Hadley liked a #TidyTuesday

post by P11’s student. Receiving the attention of leaders leads to what McMillan & Chavis [McM86]

calls membership (sense of belonging) and influence (mattering to the group) within the sense of

community theory. Jenny added that the “growing role of twitter and @RLadiesGlobal creates space

for new voices (vs “sorry all spots were filled 10 yrs ago”).” This type of leadership and initiative

seems unique to the R community and is embraced within the new space on Twitter, a contrast

to other channels like Stack Overflow, which has presented several barriers to entry, especially for

women [For16].

However, to prevent “insular” (P16) data science communities, as suggested by I15 and P16,

#TidyTuesday could be opened up for the Python community14, where users are adopting the tidy

data framework [Aug16; Hou; Yan]. Hence, #TidyTuesday can benefit other similar communities

and help them cultivate their own online community of practice around #TidyTuesday, uniting even

more data scientists in their efforts to become experts.

To organically evolve a new online CoP over time, we find that influencers and leaders of the com-

munity can play a vital role in growing the community by engaging and interacting with members

of all skill levels, and instilling the feeling of being part of a community.

4.6 Limitations

Our analysis of the #TidyTuesday project represents an initial understanding of the dynamics and

nature of participation in daily hashtag, social coding projects. We studied #TidyTuesday for the R

community using a qualitative approach through semi-structured interviews. However, there are

some limitations to our approach that represent opportunities for future research.

Generalizability. Our findings are drawn from one daily hashtag out of several others targeted

at data scientists. For example, we did not study #MakeOverMonday, which is another daily hashtag

12https://ropensci.org
13https://twitter.com/OwenChurches/status/1254634256472485896
14https://www.scipy.org

53

https://ropensci.org
https://twitter.com/OwenChurches/status/1254634256472485896
https://www.scipy.org

serving a different need: using the Tableau software to create data visualizations instead program-

ming using R. Hence, the themes we derived around motivations, skill development, professional-

ization, and community growth only represent the participants’ experience at this moment in time

for #TidyTuesday. It is important to note that some aspects of our findings might be unique to this

project and the R community. Future research should explore other data science communities to

improve our understanding of how to use daily hashtags as a tool for growing an online community

of practice.

Participation bias. Another potential limitation of our study is a self-selection bias in our inter-

viewee sample. Our sample was selected to contrast the experiences of people who participated in

#TidyTuesday but, we do not know the experiences of readers [Liu17; Ant10]who passively engage

by viewing, liking, or retweeting tweets. As a result, we may miss out on important issues related

to barriers of entry. Participants also knew the study was about a discussion of the #TidyTuesday

project, which may have influenced our sample towards those with the strongest feelings about

the project. We mitigated this issue by using random sampling for all of the posters and curators

and recruiting people of different skill levels and engagement with #TidyTuesday. However, we do

not know the feelings or experiences of non-respondents and can only compare their tweets and

participation levels.

Qualitative method. The challenges and recommendations we provide for daily hashtags as

a way to provide an online learning CoP are based on participants’ perceptions and experiences

of #TidyTuesday, not quantitative indicators of the hashtag’s effect on their behavior. To derive

themes, we used qualitative coding to analyze and interpret our data which is limited by theoretical

sensitivity and the synthesis conducted by the researchers participating in that process. We followed

the guidelines set by Carlson [Car10] and performed a single-event member check with our results.

22 participants replied and agreed with our results and requested minor changes to their quotations

or demographic information. Future studies should examine quantitative aspects of a daily hashtag

project such as the dynamics of the tweets, or how the project spread on Twitter. Rosenberg et al.

[Ros20], for example, have started an investigation of the posters’ code itself, which offers insights

on code evolution over time as an indicator for skill development. These quantitative measures can

be useful to characterize #TidyTuesday, but we believe our themes provide rich insights and offer

new directions for future work to further understand the benefits and challenges associated with

the use of daily hashtags.

4.7 Conclusion

In this study, we conducted a qualitative case study on #TidyTuesday—a social coding project for

data scientists using R—using the framework of CoP, and extending previous work related to forming

and sustaining online CoPs on Twitter. From our analysis of semi-structured interviews with 26

participants, we examined motivations and goals of data scientists participating in #TidyTuesday

and how it benefited them. We found that the participants were attracted to the rhythm provided

54

by the project, the opportunity for professional development, and becoming part of the larger R

community. Through #TidyTuesday, participants enhanced both technical and communication skills

by learning from others, adopting best practices in R, and building an online presence. #TidyTuesday

was effective in forming an online CoP by disseminating best practices, providing opportunities for

curations to satisfy community needs, bootstrapping offline events and promoting an inclusive,

welcoming community. Based on our findings, we discussed several benefits and limitations to using

daily hashtags on Twitter to form a community and provide guidelines on cultivating a successful CoP

using a daily hashtag such as placing a low barrier of entry for newcomers by providing onboarding,

normalizing the sharing of code and artifacts to promote social learning, and making room for

evolution for organic growth and sustenance. We believe daily hashtags can be adopted by other

data science communities interested in cultivating an online CoP.

55

CHAPTER

5

INTERACTIVE EXPLORATION OF

DATA SCIENCE CODE

In the previous chapter, we studied how an online community of practice helps programmers

learn data wrangling by browsing and extending others’ code. How could we extend support within

Integrated Development Environments (IDEs) for data science programming in a way that helps

support this behavior of foraging and adapting others’ code? In this chapter, we discuss a tool

we built called Unravel, an in-situ exploration and learning tool within the RStudio IDE for data

scientists using R. We discuss the results of a user study [Shr21a] evaluating the usefulness of the

affordances of Unravel for understanding, exploring, and debugging data wrangling code.

5.1 Motivation

Data scientists have adopted a popular design pattern in programming called the fluent interface for

composing data wrangling code. The fluent interface works by combining multiple transformations

on a data table—or dataframes—with a single chain of expressions, which produces an output.

Although fluent code promotes legibility, the intermediate dataframes are lost, forcing data scientists

to unravel the chain through tedious code edits and re-execution. Existing tools for data scientists

do not allow easy exploration or support understanding of fluent code. To address this gap, we

designed a tool called Unravel that enables structural edits via drag-and-drop and toggle switch

interactions to help data scientists explore and understand fluent code. Data scientists can apply

simple structural edits via drag-and-drop and toggle switch interactions to reorder and (un)comment

lines. To help data scientists understand fluent code, Unravel provides function summaries and

56

Unravel Inspect Explore2

CODE

OUTPUT

CODE

OUTPUT

CODE

OUTPUT

CODE

OUTPUT

1 3
Unravel Inspect Explore

Figure 5.1 Unravel is a tool that helps data scientists understand and explore fluent code via structured
edits using drag-and-drop and toggle switch interactions. The data scientist unravels fluent code to get
access to intermediate outputs for each line. They can then inspect a particular line of code and its respec-
tive output. Data scientists can explore the code using drag-and-drop to reorder lines, and toggle switches
to enable or disable lines and automatically produce new outputs to investigate.

always-on visualizations highlighting important changes to a dataframe. We discuss the design

motivations behind Unravel and how it helps understand and explore fluent code. In a first-use

study with 14 data scientists, we found that Unravel facilitated diverse activities such as validating

assumptions about the code or data, exploring alternatives, and revealing function behavior.

5.2 Introduction

Data scientists apply a common programming design pattern—the fluent interface [Fow05; Fow10]—

when they transform and wrangle data tables, or dataframes. The distinguishing feature of the fluent

interface is that it composes multiple operations into a chain, with each operator in the chain

accepting data from the result of the previous operator, performing a computation on it, and passing

its result on to the next operator. Advocates for the fluent interface suggest this style of programming

improves readability by removing the need to assign intermediate results to variables. To illustrate

how fluent interfaces are applied in practice, consider fluent code written in R (Figure 5.2).

In the “tidyverse” [Tida] dialect of R, the pipe (%>%) operator forms the links in the chain of

expressions by piping [Pip] results of function calls together, shown in Figure 5.2. In Figure 5.2a, the

penguins variable containing the dataframe from the Palmer Penguins dataset [Hor20] gets piped

(%>%) or passed to a select function to select columns, species and flipper_length_mm. The

result is piped to the function group_by function to group the data by the species column which

is finally piped to the summarise function to calculate the mean of the flipper length (flipper_-
length_mm) according to each species and store it in a new column, mfl. Note how the final code

is built up by solving smaller subproblems (selecting, grouping, and summarising), forming a single

large chain. But, what if there is a problem with the final output?

Although fluent code is designed to be readable and concise, these advantages come with a cost:

57

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species mfl
#> 1 Adelie NA
#> 2 Chinstrap 196.
#> 3 Gentoo NA

(a) Summarizing mean flipper lengths of penguin species.

penguins %>%
select(species, flipper_length_mm) %>%
group_by(species) %>%
summarise(mfl = mean(flipper_length_mm))

#> Output:
#> species flipper_length_mm
#>
#>
#> 4 Adelie NA

(b) Inspecting the line up to select with a dangling %>%.

Figure 5.2 An example of exploring fluent code in R, which outputs a dataframe of mean flipper lengths of
different penguin species.

isolating problems within a broken chain becomes a clerical and cumbersome process. Because

fluent code removes intermediate variables, one of its significant disadvantages arises when the data

scientist needs to inspect an intermediate result. In Figure 5.2a, a data scientist might be surprised to

find the mean of flipper lengths of the Adelie and Gentoo species are NAs or “not available.” To hunt

for clues, the data scientist is forced to “unravel” the chain and find the “broken” link (Figure 5.2b),

where they have to modify and re-execute the code to discover flipper_length_mm contains

missing values, an easy to miss detail. To verify the source of NAs, the data scientist had to comment

lines, remove a dangling pipe operator, and execute the code up to the select function. They

can then fix this issue by excluding rows with NAs for flipper_length_mm could be removed by

inserting a function called drop_na before the select line.

We identified several limitations behind existing solutions to help data scientists explore fluent

code. Prior research has focused on helping data scientists become more productive by managing

messy code [Hea19], keeping track of versions [Ker17b], exploring alternatives [Wei21] or generating

code [Dro20] using programming-by-example techniques. However, these tools are designed to

help manage entire scripts or notebooks, and do not provide affordances to easily understand and

explore code at a finer-grain level. In the R community, data scientists have voiced a need to support

introspection and debugging tools for fluent code, with several attempts at solutions.1 Existing

inspection and debugging tools attempt to solve parts of the problem but fall short in several ways.

Current solutions require a data scientist to meticulously debug, log, and selectively execute of code.

For example, a debugger [Bac14] is a heavyweight solution for exploring fluent code and it forces the

data scientist to linearly step through their code. Printing intermediate results to the console—for

example, with tidylog [Elb21]—is lightweight but generates noisy output. Other solutions require

newer types of operators to debug fluent code which might introduce more issues.2 This suggests a

need for easily exploring and understanding fluent code in data science.

To address this need, we introduce Unravel, a tool that enables structured edits using drag-and-

1https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/
14724

2https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

58

https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

drop and toggle switch interactions with always-on visualizations to help data scientists explore

and understand fluent code. Unravel is a web application that runs within the RStudio IDE. Using

an interactive code overlay, data scientists can unravel a chain of fluent code in R to examine

intermediate dataframes, understand the transformations of dataframes along the chain, and

apply simple structural edits without typing. Data scientists can apply structural edits to fluent

code by reordering lines using drag-and-drop, or enabling or disabling lines using toggle switches.

To help data scientists understand each step in fluent code, function summaries describe the

transformations on dataframes and always-on visualizations are used to highlight important changes

to dataframes. We designed Unravel to help data scientists get clarity on data transformations, and

reduce the burden of typing to manipulate fluent code. The contributions of this paper are:

1. A tool called Unravel that enables structured edits via drag-and-drop and toggle switch inter-

actions with always-on visualizations to help data scientists explore and understand fluent

code. We discuss the design motivations behind Unravel and how data scientists can use it to

support a variety of tasks.

2. Through a first-use study with 14 data scientists, we demonstrate that Unravel complements

an IDE workflow, offers an interactive way to explore fluent code, and supports a variety of

tasks related to understanding and writing data wrangling code.

Asha begins her investigation on checking why the final dataframe was grouped in the final

output (Figure 5.3 C). Unravel focuses on the final line with the mutate function automatically,

and Asha notices that the percent_male and ratio on the code and the dataframe output

are marked as visible changes, but the year column is marked as an internal change. She had

assumedsummarise would have removed all group variables after calculating the sum of year
and sex columns, but a group variable was kept. Puzzled, Asha investigates the summary of the

summarise line to figure out how it handles group variables (Figure 5.4).

The new total column is marked as a visible change, while the year has stayed an internal

change. To her surprise, Asha learns from the summary that summarise will drop the last grouping

variable (sex), but keeps the rest of the group variables (year). This explains why she only saw

the year column marked as internal change in the final output. Before moving on, Asha wants to

confirm that summarise works on a grouped dataframe, so she temporarily disables the group_by
line (Figure 5.5). The summarise line is automatically focused. Asha glances at the dimensions

the dataframe output which is only one row and column. She confirms that without group_by,

summarise will work on the entire dataframe instead of particular columns.

Asha now wants to sample the firstyear andsex groups. She adds a line in the editor to select the

the first group using a slice function, placing it before the group_by line. Upon running Unravel

on her new code, she comes across an error (Figure 5.6). Examining the dataframe dimensions

on the slice and subsequent functions, she realizes she had only selected the first row of the

original dataframe. Asha fixes the issue by reordering the slice line below the group_by, which

59

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

babynames %>%
 group_by(year,sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from = total) %>%mutate(percent_male = round(M / (M + F) * 100,

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2),ratio = M / F)

year F M percent_male ratio

1
2
3
4

A

B

C

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 90993 110491 54.84 1.21428021935753

2 1881 91953 100743 52.28 1.09559231346449

3 1882 107847 113686 51.32 1.05414151529482

4 1883 112319 104627 48.23 0.931516484299184

5 1884 129020 114442 47.01 0.887009765927763

1 2 3 4 5 ... 28 Next1–5 of 138 rows Previous

babynames %>%
 group_by(year,sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from = total) %>%mutate(percent_male = round(M / (M + F) * 100,

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2),ratio = M / F)

year F M percent_male ratio

1
2
3
4

FED

Figure 5.3 The workflow and interface of Unravel.

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

3

_

138

3

_

138

5

_

1 1880 F 90993

2 1880 M 110491

3 1881 F 91953

4 1881 M 100743

5 1882 F 107847

1 2 3 4 5 ... 56 Next1–5 of 276 rows Previous

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

year sex total

1
2
3
4
5

Summary: changed the dataframe shape from

year sex,

 [1924665 x 5] [276 x 3] to

(working on group variables:

created one variable total via sum(n)

Keep in mind, the data is internally grouped by

summarise

)summarise

year

Figure 5.4 Visual highlights on the code, function summary, and output are applied when focusing on a
line.

automatically updates the output to return the first year and sex group (Figure 5.7). She also learns

that slice will keep the groups year and sex.

60

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

_

1

1

_

_

_

1 348120517

babynames %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex,values_from
 mutate(percent_male = round(M / (M + F)

babynames %>%

 summarise(total = sum(n

 pivot_wider(names_from =

 mutate(percent_male = ro

total

1
2
3
4
5

Figure 5.5 A line can be disabled using the toggle switch which automatically re-evaluates the remaining
lines.

Summary: Problem with

Input

mutate() input percent_male

Object ‘M’ not found

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 slice(1) %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

is round(M/(M + F) * 100, 2))

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1

5

_

1

5

_

1

3

_

1

2

_

_

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 slice(1) %>%

 group_by(year, sex) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), ratio = M / F)

1
2
3
4
5
6

Error: Problem with `mutate()` input `percent_male`.
x object 'M' not found
ℹ Input `percent_male` is `round(M/(M + F) * 100,
2)`.
ℹ The error occurred in group 1: year = 1880.

The error occurred in group 1: year = 1880

percent_male

Figure 5.6 Clicking the summary box of the line with an error displays the error message.

5.3 Related Work

Unravel builds on prior tools that help data scientists write and understand code. Our work is closely

related to the research on interactive tools that enable exploratory programming.

Writing code for data science. In computational notebooks, researchers have developed tools

that help data scientists write and modify code. For example, Gather [Hea19] helps analysts find,

clean, recover, and compare versions of code in cluttered, inconsistent notebooks. While Gather was

designed for the notebook as a whole, our tool helps data scientists manage messes that arise within

fine-grained, fluent code chains. To explore alternative code in notebooks, Fork It [Wei21] introduces

a technique to fork a notebook and directly navigate through decision points in a single notebook.

We designed a more lightweight approach to explore code by allowing exploration through overlays

and structural edits on the code itself, for example, by enabling, disabling or reordering lines. To

help data scientists generate data wrangling code, Wrex [Dro20] uses programming-by-example.

Similarly, mage [Ker20] is a tool that helps users generate code based on the modifications made

from interacting with dataframes. Unravel complements tools like Wrex and mage by allowing data

scientists to understand and iterate on the machine-synthesized code.

Understanding code for data science. Prior work has explored tools to help data scientists

understand code. For example, Wrangler [Kan11] is an interactive tool designed to ease the process

of writing data transformation scripts. Wrangler takes a table-centric approach where data scientists

61

No change Internal change Visible change Error

Unravel
Examples

˺ Unravel L Help

1.9M

5

_

1.9M

5

_

276

5

_

276

3

_

138

3

_

138

5

_

1 1880 F Mary 7065 0.07238359

2 1880 M John 9655 0.08154561

3 1881 F Mary 6919 0.0699914

4 1881 M John 8769 0.08098299

5 1882 F Mary 8148 0.07042655

1 2 3 4 5 ... 56 Next1–5 of 276 rows Previous

babynames %>%
 slice(1) %>%
 group_by(year, sex) %>%
 summarise(total = sum(n)) %>%
 pivot_wider(names_from = sex, values_from = total) %>%
 mutate(percent_male = round(M /(M + F) * 100, 2), ratio = M / F)

babynames %>%

 group_by(year, sex) %>%

 slice(1) %>%

 summarise(total = sum(n)) %>%

 pivot_wider(names_from = sex, values_from = total) %>%

 mutate(percent_male = round(M / (M + F) * 100, 2), rati

year sex name n prop

1
2
3
4
5
6

Figure 5.7 Drag-and-drop can be used to reorder a line, which automatically re-evaluates code to generate
new outputs.

manipulate the table to produce scripts; our approach assumes that data scientists are already

working with code and supports their understanding and exploration through it. Lau et al. [Lau21]’s

TweakIt is a system designed to help end-user programmers collect, understand, and tweak Python

code within a spreadsheet environment. Unravel shares similar design goals such as previewing

outputs on different parts of the code, but it surfaces these capabilities through interactive visual

overlays on the fluent code chains.

Closely related to our current work is Pu et al. [Pu21]’s system for animating dataframe wran-

gling and visualization pipelines in R. Datamations automatically animate fluent code in R using

tidyverse/dplyr [Tida] packages and provides a paired explanation and visualization of each

step in the chain. Our work differs in multiple respects. First, Datamations provides visualizations of

operations within the chain with summaries on the intention behind each step. In contrast, Unravel

provides an interactive tool that allows direct access to the intermediates throughout the chain

for further inspection and exploration. While Datamations provide basic visual cues for tabular

animations—such as highlighting a column for different grouping variables—we provide visual cues

for more information such as the intermediate dataframe shape, and the type of change occurred at

each step. Lastly, Unravel allows for exploration within the code, dynamically creating explorable

code upon structural edits, whereas Datamations provides animated explanations.

Interactive affordances for code exploration. Researchers have investigated many useful inter-

62

active affordances for code explorations that we adapt to the data science context. Although these

affordances were designed for different contexts, they are useful for addressing some of the pain

points regarding fluent code.

Always-on visualizations can help data scientists understand and inspect code and data. Lieber

et al. [Lie14] built an IDE tool called Theseus which provides an always-on visualization to display

the number of API calls made within the editor for JavaScript code. We adapt this visualization

technique for fluent code to display dataframe properties like its row and column dimensions.

Similarly, “projection boxes” [Ler20; Fer20] are an always-on visualization technique for displaying

runtime values of Python programs such as the contents of arrays. This can help minimize context-

switches when writing data wrangling code since it requires a constant checking code and dataframes.

Unlike projection boxes, we display one intermediate dataframe at a time instead of displaying

them all at once.

Interactive debuggers and steppers are another useful technique for exploring data wrangling

code. For example, Whyline [Ko04a] introduced an interrogative debugging interface for asking “why”

or “why not” questions about a program. Whyline visualizes answers in terms of runtime events

connected to the questions. Although our tool does not directly support asking explicit questions, it

can aid this type of investigation by facilitating inspection of each intermediate dataframe in fluent

code for data wrangling. Timelapse [Bur13] is a tool that helps web developers browse, visualize, and

explore recorded program executions using debugging tools such as breakpoints and logging. We

record program executions on fluent code to support investigation of all intermediate dataframes

produced in the chain.

5.4 System Design and Implementation

Unravel is a tool that is run within the RStudio IDE to support data scientists introspect and explore

fluent code using R. We picked R because it is widely used in data science, and is a popular language

in data science based on the TIOBE index.3 [Cha21] and HTML/CSS/JavaScript.

5.4.1 Design Motivations

Fluent expressions are used by many programming languages in data science. For example, LINQ

(Language-Integrated Query) is a fluent interface in C#, a convenient wrapper—known as an object-

relational mapper (ORM)—around database query languages like SQL. Languages like Python use

the fluent interface for data analysis code through the pandas library. In the R community fluent

code encompasses a vast majority of existing R code. The fluent pattern is used in a collection of

R packages called the “tidyverse” [Tida] to facilitate importing data, wrangling data, computing

statistics, manipulating strings, and modeling data. In the RStudio Community Forums, a popular

3https://www.tiobe.com/tiobe-index/r/ The R language also provides metaprogramming capabilities which
make it convenient for some stages of the implementation such as parsing and evaluation of intermediate expressions. It
is built using the R Shiny Framework

63

https://www.tiobe.com/tiobe-index/r/

Q&A site for R, the tidyverse is the 3rd largest category suggesting users experience pain points with

these packages on a daily basis. Among the various contexts where fluent code is used, we examined

data wrangling as an important activity to support because it is one of the most time consuming

and difficult aspects of analysis [Mul19; Das03].

We examined the R community to identify pain points expressed by data scientists when un-

derstanding and exploring fluent code. Data scientists have expressed the need for transparency

about the data that they are transforming.4 One data scientist expressed how “we aren’t good at

tracking state”5, and it’s easy to miss whether or not a dataframe is grouped, where “working on a

grouped [data] that you forgot is grouped can lead to ‘unexpected’ results”6. To inspect issues in

fluent code, a traditional debugger can be too heavyweight for exploring smaller code snippets. The

data scientist also has to linearly progress through their code and cannot openly explore code at

any step. The R community has explored special pipe operators to debug fluent code, but these

can introduce more typing mistakes and confusion for data scientists by adding more syntax to

remember.7 tidylog [Elb21] is a lightweight solution which prints the summaries of functions

to the console output, but this can generate noise and it does not save intermediate dataframes

for further inspection. During explorations of the code, data scientists have to constantly switch

between the source editor and the console output to validate the effect of code on dataframes. This

forces context switches. Altogether, we identified a need for an in-situ tool within an IDE—such as

RStudio—that provides clarity on transformations, and reduces the burden of typing to manipulate

fluent code. To address these needs, we arrived at the following design goals:

D1. Provide transparency about the dataframe in fluent code. The code and the respective

dataframe intermediate outputs should be accessible at all times. Users must be able to click

the relevant part of the chain to view its intermediate dataframe and glean basic information

like row and column dimensions, the types of changes occurred and a summary about the

transformation.

D2. Allow just-in-time explorations of fluent code. To help data scientists easily perform

inspections on fluent code, they must be able to perform simple structural edits to the fluent

code. Structural edits must instantly update the UI to easily explore the new intermediate

dataframes.

D3. Minimize context-switching to unravel fluent code. To minimize context-switching, the

tool should be integrated into data scientists’ workflow within the IDE. Users must be able to

input their own code to explore the chain.
4https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/

14724
5https://twitter.com/mjskay/status/1367244873607249922
6https://twitter.com/aosmith16/status/1369689345335070732
7https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

64

https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://community.rstudio.com/t/whats-currently-the-recommended-way-to-debug-pipe-chains/14724
https://twitter.com/mjskay/status/1367244873607249922
https://twitter.com/aosmith16/status/1369689345335070732
https://win-vector.com/2017/01/29/using-the-bizarro-pipe-to-debug-magrittr-pipelines-in-r/

5.4.2 Implementation

We present the implementation of Unravel by describing the entire process from invoking the tool

to exploring a code snippet in the web application. We discuss our design decisions for all of the

features to support our design goals in Section 6.2.1.

5.4.2.1 Code Parsing and Trace Executions

Unravel initially parses the user’s code (Figure 5.3 A) and splits the fluent code into multiple code

snippets that represent each part of the chain. Unravel parses the code passed to the unravel()
function. We make sure to check the abstract syntax tree (AST) to ensure that the code is fluent

code using the %>% operator and that it contains at least one line of code, a variable (or symbol in R)

pointing to the dataframe. Unravel then splits the fluent code into intermediate expressions of the

chain on the %>% operator. For each expression, we strip %>% operator at the end of an expression in

order to evaluate it We store a list of these expressions to be evaluated in the next step. A challenge

we faced was graceful handling of parsing errors along the chain. We chose to perform a best effort

at parsing syntactically correct lines until it hits a problematic line, excluding the rest of the lines.

This simpler implementation relies on the user to fix their code first instead of skipping to the lines

after the error.

Trace executions. To produce the intermediate dataframes, we iterate through the list of inter-

mediate expressions from the previous step, and evaluate each expression to create a new list holding

all of the intermediate dataframes. For lines that throw an error, we store the error message and skip

the rest of the lines that may follow. The message is used presented in the function summary tooltip

to give users feedback as they would receive it on the console output. An alternate implementation

could be to skip the line which causes the runtime error, and keep evaluating the rest of the lines.

We decided to rely on a simpler solution: storing the error message displaying it when the user clicks

on the summary box (Figure 5.3 D) next to the problematic line so that they can try to fix it. The

user could also toggle switches to disable problematic lines. Unravel extracts and stores its row and

column dimension information, as well as the type of change occurred. As before, these dataframes

and the associated information are stored in a list for the UI to reference.

Summary generation. Unravel generates summaries using an extension of tidylog [Elb21], a

package that is designed to log function summaries of tidyverse R code onto the console output. By

loading our extension of tidylog, we overriding transformation functions with custom logging

functions of using the same name and signature. When the user calls functions like group_by, we

use the custom functions to introspect into the input dataframe and its arguments. We extended

tidylog to capture summaries of each function instead of printing them to the console. There

are numerous ways one could describe a function’s effect on a dataframe such as warnings against

certain parameters. However, we decided to focus on three simple pieces of information: 1) Mention

the dataframe dimensions and if they have changed, 2) Highlight important column variables, and

3) Provide supplementary information about functions that have subtle changes like summarise

65

(Figure 5.4).

5.4.2.2 Visual Cues

Before interaction is possible, Unravel constructs the GUI using information about the chain from

previous steps. To provide transparency about the data and its lineage in fluent code (D1), Unravel

uses the dataframe dimensions, types of changes, and function summaries to create visual cues. We

first describe the design of the visual affordances below.

Data change schema. To help data scientists pay attention to subtle changes, we designed a

simple data change schema which visualizes different types of changes. We analyze the difference

between the incoming and the resulting dataframe when a transformation function is called. Differ-

ent colors are used highlight changes within the summary box, code and the dataframe output. “No

changes” are means no change occurred after an operation. “Visible Changes” means the dataframe

was transformed (e.g. creating new columns, mutating existing columns). The “Internal Changes”

means there is no visible effect but the dataframe has been marked as a grouped by variables. Finally,

the “Error” is to indicate a runtime error.

Code, summary, and dataframe callouts. To help data scientists keep track of dataframes and

their state, Unravel highlights the code, function summaries, and the dataframes using the data

change schema described above. We drew inspiration of this design by Wayne [Way]’s strategy to use

run-time information to highlight parts of the code. There are lots of properties one could access

from a dataframe during runtime, such as the number of missing values, but we decided to highlight

column variables of interest in the code, output, and function summary (Figure 5.4). For a particular

line, Unravel compares the previous and the new dataframe to highlight column names if they

were transformed, or used as a group variable. Unravel also highlights text related to the changed

column variables within the function summary text. Finally, the output dataframe column(s) is also

highlighted accordingly.

Always-on visual cues for data transparency. To achieve our design goal of providing trans-

parency (D1) about the dataframe, Unravel uses always-on visualizations. Data scientists have to

continually track properties about dataframes which can be cognitively demanding, especially in

complex data wrangling code composed of many operations. TensorSensor [Par] approaches the

problem by improving the quality of exception messages around data dimensions, a particularly

difficult task for novices. We were also inspired by Lieber et al. [Lie14]’s always-on visualizations

tracked the number of api calls for web applications to help prevent misconceptions among students.

Unravel’s always-on visualizations consists of a summary box next to each line which displays the

dataframe’s row and column dimensions (Figure 5.3 D) and highlights to indicate the type of

change occurred. Visual diffs—a display of the differences between lines of code—could have been

used to illustrate differences between two dataframes. However, data scientists might not always be

interested in checking the change between operations and an always-on diff visualization might be

too disorienting. We decided on a simpler design to only show the snapshot state of intermediate

dataframes.

66

5.4.2.3 Fluent Code Interactions

Unravel constructs the GUI by incorporating the dataframe information captured by evaluating

intermediate expressions from the previous steps. We also link communication between R and

JavaScript to respond to user interactions. Once the setup is complete, users can start inspecting the

fluent code or apply structural or code edits for exploration. Below we discuss the design behind

the structural drag-and-drop and toggle switch interactions to achieve D2.

Fluent code overlay. To help data scientists interact with fluent code, Unravel creates a web

application within RStudio which overlays the code with a UI (Figure 5.3 B). Lerner [Ler20] used

the idea of live projection boxes—presenting runtime values in boxes as the user types—for live

programming to keep track of changes in data types like lists and arrays. We considered adopting

this idea for data wrangling with fluent code, but typing can be cumbersome and the continual

visual updates could become distracting. We designed Unravel as an exploration mode for data

scientists to inspect and explore fluent code in isolation from their other code. Therefore, Unravel is

presented in a separate window but within the IDE. Unlike projection boxes, Unravel only shows

one dataframe at a time for a particular line in the fluent code. Information about the intermediate

lines of code and their respective dataframes are used to populate and update UI elements on the

fluent code overlay for displaying dataframe dimensions and types of changes occurred.

Structural edits via drag-and-drop and toggle switch interactions. To help data scientists eas-

ily edit fluent code, Unravel provides drag-and-drop to reorder lines and toggle switches to en-

able/disable them. The order of operations (lines) is important in fluent code because a dataframe

is transformed by functions in sequence along the chain. Drag-and-drop interactions on code has

been used previously to help users refactor or change code, and fix bugs [Lee13; Bar16]We use

drag-and-drop to explore the effects of function order. Using the move icon (Figure 5.3 E), a line

can be dragged before or after another line. Upon dropping a line, Unravel automatically evaluates

the code to produce new dataframes to explore. Unravel will also handle trailing %>% operators for

the last enabled line in the new code overlay. Another structural edit we implemented was enabling

or disabling a line using toggle switches (Figure 5.3 F). We use toggle switches as another structural

edit to help data scientists examine the effects behind the presence or absence of certain functions.

Although a simple edit, this can be useful for isolating the exploration on certain lines of the chain.

5.4.3 System Scope and Limitations

We limited the scope of our tool in order to explore the usefulness of interactive exploration of fluent

code. Here we briefly describe the scope and limitations of Unravel.

Supported code. We scoped our tool to focus on single-table data wrangling functions in the

dplyr [Wic21] and tidyr [Wic19b], data wrangling packages that use the fluent interface. Unravel

is limited to fluent code. Certain non-fluent code like variables storing dataframes and other similar

data types like lists could benefit from always-on visualizations. Another issue is that some functions

can have parameters that also accept a function as its value. For highlights on code, Unravel is

67

limited to simple function parameter values representing column names, not parameter values

which are themselves functions. Finally, the output of an operation in fluent code could produce

a list. However, Unravel only supports dataframes as the output of code and would need to be

extended to render different types of data.

Evaluation limitations. Unravel does not attempt to sanitize a valid fluent code for side-effect

functions, guarantee deterministic outputs, or optimize for performance. Some functions in both

base R and tidyverse R cause side effects instead of returning values. Unravel is not currently

aware of such functions, which could cause unexpected results. Using our evaluation strategy to

generate the intermediate outputs, if a line within the chain contains a function that generates

random numbers (e.g. runif), we currently generate new numbers for each subsequent operation.

This can be an unexpected result if programmers make use of such functions. Lastly, we did not

optimize Unravel to handle large dataframes and opted to use smaller datasets for the study. Hence,

Unravel will become sluggish once dataframes become too large.

5.5 Evaluation: First-Use Study

To evaluate the usefulness of Unravel, we conducted a first-use study with 14 data scientists, 6 from

academia, and 8 from industry. Participants had varied levels of experience. On a 5-point Likert

scale, participants self-reported their experience in data science (µ = 3.6), data wrangling (µ = 3.7),

R (µ = 3.7), and the fluent interface (µ = 4).

5.5.1 Methods

We conducted the studies over video conference using an online version of Unravel. We began each

study by describing the tasks to participants. The tasks used built-in R datasets likemtcars andiris,

some open datasets likediamonds (included in theggplot2package [Wic16]),babynames [Wic19a],

and gapminder [Bry], as well as one hand-crafted dataset called student_grades. The partici-

pants were tasked with exploring several code snippets written in tidyverse R dialect using the

dplyr and tidyr packages. The code snippets were chosen to tease out how users would discover

and explore the chain associated with prototypical types of data wrangling pipelines like selecting,

filtering, mutating, grouping, and summarising dataframes.

For each code snippet, the task began open-ended where participants could explore each code

snippet with Unravel then focused on specific tasks tailored to each snippet. We wanted participants

to start using Unravel with open-ended exploration to capture their initial interactions with the

tool. We then focused on specific tasks related to probing certain lines, and performing actions

like toggling lines on or off, reordering lines, and asking them to observe the effect of the functions

on the dataframe. Finally, we also asked participants to explore their own code in the RStudio IDE

to gauge how well Unravel could be integrated into their daily workflows. While interacting with

the tool, we asked participants to think aloud and ask questions. After the completion of the study,

we administered an exit survey to measure the usefulness of Unravel features, and to ask for any

68

additional comments from participants about their experiences.

5.5.2 Post-study Survey Results

On 5-point Likert scale, participants positively rated the usefulness of Unravel overall (µ = 4.6). Par-

ticipants found the clickable lines for viewing intermediate dataframes (µ = 4.6) and toggle switches

for enabling or disabling lines (µ = 4.6) were the most useful features. Similarly, the participants

positively rated the usefulness of the summary boxes for viewing the dimensions and data change

type (µ = 4.4), and drag and drop for reordering lines (µ = 4.3). However, there were less positive

ratings for the usefulness of the data change color schema for visual callouts on code and dataframe

outputs (µ = 4.1), and function summary tooltips (µ = 3.9). 93% of the participants responded that

they would likely use Unravel to debug fluent code, while 79% of the participants responded that

they would use it to understand fluent code.

5.5.3 Qualitative Results

We present our qualitative results from the user study, describing the interactions we observed, and

the feedback participants provided throughout the tasks. The results of our first-use study suggest

that Unravel addresses the design goals we formulated in Section 6.2.1. Participants found that

Unravel provided transparency about the data (D1), allowed just-in-time exploration (D2), and

minimized context switches between code and data (). In this section, we discuss our study results

through the context of our design goals.

5.5.3.1 Visual Cues Helped Achieve Data Transparency

Participants relied on the visual cues to track transformations of a dataframe across the chain (D1).

Summary boxes provided a useful visual cue for the basic properties of dataframe. Participants

like P5, P6, P14, or P1 used the summary box dimensions to infer changes like adding columns or

stripping rows from certain operations like filter or summarise. For example, P14 found that

“it was very useful to have this at a glance information about the data shape and type of change at

times because it supports quickly checking if the dataframes are correct.” Upon discovering the

row and column dimensions of the summary box, P5 thought “that feature of rows and columns

numbers is I think one of the most powerful teaching things. It’s really cool to see mutate is adding

this column.” The data change schema highlights were used by the participants to validate changes

to the dataframe between steps. P4 expressed, “I like that you can flip between lines pretty quickly to

see what changed, you have something that guides your attention. Being able to step through it and

being able to walk through like look at this, look at that!” P5, a data science educator, commented

how the internal change would be useful for teaching students about the behavior of grouped data:

“I really like being able to show this internal change. This color scheme is really nice. Because I think

students, even after you tell them they should expect it, they miss it.”

69

5.5.3.2 Explorations on the Code and Data Enabled Checking Assumptions

Overall, we were able to achieve D2. Participants clicked on different parts of the chain, and explored

the code using the drag-and-drop interaction and the toggle switches to validate their assumptions

about the code and output. We found that being able to click on arbitrary lines of the fluent code

was helpful for data scientists to inspect intermediate dataframes without being constrained to a

linear stepping interaction like debuggers. The toggle switches to enable or disable lines helped

participants explore the influence of certain functions when used with other functions. For example,

P2 expressed that “it’s cool how it helps dispel goofy assumptions about what attribute persists

versus not. It made me examine so many assumptions especially grouping.” Participants like P12,

P8, P4 or P10 tested hypotheses about the code behavior by applying structural edits to the fluent

code like disabling lines or reordering them. When examining the role of a group_by function for

example, P10 guessed that “if you don’t group by species then that would just work on the entire

dataset.” P10 then toggled off the group_by and confirmed “when you summarise the total now,

it’s applying this function across everyone in the dataset.”

Participants explored and made use of the summary text to understand operations with large

visible changes. Some R experts (P4, P2, P6) found that toggling lines on or off especially useful for

understanding pivoting operations: “being able to quickly flip between lines after toggling things

on or off is nice for these pivot_wider or longer functions.” (P4). P2 found the summary text was

useful for confirming their own summaries they made mentally: “I really like the pivot summary

description.” Sometimes, order effects were explored by participants. For example, P6 was able to

validate the importance of placing a function like filter before running a summary function on

the dataframe by reordering lines: “There are rows outside of mass that are also being dropped. This

makes sense because I missed the hair_color so that’s where I’m getting my counts of 28 versus 33

rows. This is interesting to be able to check your assumptions of getting the outputs.”

5.5.4 Unravel Helped Minimize Context Switches Between Code and Output

Participants found the integration of Unravel into their IDE workflow to be useful. All participants

commented that it was quite convenient that they could simply pipe (%>%) their own fluent code in

R into a single function unravel to open up the tool in RStudio (D3). Upon unraveling a complex

tidyverse code snippet P4 commented, “Oh wow, it actually worked! I like how you pipe it in at the end

and it gives you this awesome thing.” However, other participants wanted tighter correspondence

between the text editor and the explorable code. For example, P3 expected the structural edits on

the text editor to automatically update the code overlay and suggesting adding it as a feature since

“it’s so handy to not have to manually run from editor.” Other participants (P4, P6, P9, P11) tried to

edit the code in the explorable code itself, suggesting a need for live updates to the editor to further

reduce context switches, especially if they want to copy the edited code.

70

5.6 Discussion and Future Work

In this section, we discuss the broad implications of our findings and identify the ways in which

Unravel could be adapted to various programming languages and contexts.

Unraveling Code in Educational Settings. One common thread from our study was the excite-

ment around using Unravel as an educational tool. Data science educators make use of compu-

tational notebooks, which students use to engage with content, code, and interactive elements

like widgets or videos. These interactive documents enrich the learning experience by allowing

learners to explore and understand code. P5 wanted to use Unravel as a teaching tool to author

exercises in the spirit of Parson’s Problems [Den08], asking students fix problematic fluent code using

the structured drag-and-drop interactions. P9 commented that Unravel would have helped their

tutoring sessions within the IDE because “it would’ve been really useful to walk through steps of how

it starts getting data to how it ends.” In a future version, Unravel could be used within interactive

tutorials to explore code in RMarkdown [Sch21] or extended for Jupyter Notebooks.

Data Scientists Can Benefit From in-Situ Learning Tools. Instead of offloading to external

learning resources, we should provide learning tools within the IDE or computational notebook.

Data scientists can avoid context switches by using in-situ tools to generate code [Dro20; Ker20],

version code [Ker17b], or manage messy code [Hea19]. Unravel builds on this approach by offering

an exploration mode for fluent code within the IDE. An interesting application of Unravel could be

to help data scientists understand code generated by programming by example techniques. Fer-

dowsifard et al. [Fer20]’s study of a live programming tool for python found that “programmers

do not try to understand the code generated by the synthesizer.” To encourage programmers to

understand, tweak, and trust synthesized code, providing a means to explore code interactively

with descriptions of operations might be useful. The data scientists in our study found it useful to

use Unravel within the IDE because they could understand and explore their own code. However,

some participants wanted live updates between the code in text editor and the explorable code

overlay. In the future version, Unravel could incorporate elements of live programming techniques,

syncing the structural edits to the original code. Based on our participants’ focused behavior using

Unravel, we believe that constant updates of dataframes during typing could be too distracting, so

there should be a careful balance between liveliness and focused explorations.

Unravel in Other Programming Contexts and Environments. Unravel can be adapted to other

programming languages and contexts to help understand and explore fluent code. Language-

Integrated Query (LINQ) is a domain-specific language in C# that is used to query from various data

sources such as relational databases (SQL). LINQ uses the fluent interface to filter on data:

List<int> numbers = new List<int>() {5, 4, 1, 3, 9, 8, 6, 7, 2, 0};
var orderingQuery = numbers

.Where(num => num < 3 || num > 7)

.OrderBy(n => n);

Structured explorations on LINQ queries can help C# programmers inspect and debug the chain

71

by allowing them to inspect each intermediate result, and explore variations with drag-and-drop or

toggle interactions. Similarly, Python uses fluent code through method chaining to wrangle data

using the pandas library:

df[['fl_date' , 'tail_num' , 'dep_time' , 'dep_delay']]
.dropna()
.sort_values('dep_time')

Since each method returns a dataframe, we can analyse the code and split on method calls

to store the intermediate dataframe for each operation ([[, dropna, and sort_values). Fluent

code is also used in data processing frameworks like Spark, which is used for handling big data.

Spark provides wrappers for many languages including Python and R. Programmers using Spark

can use a tool like Unravel for interactively exploring fluent code that handles much larger data.

Scaling Unravel to handle big data will require an effective way to summarise and visualize data

transformations. Here, it might be useful to use Niederer et al. [Nie17]’s strategy behind TACO, an

interactive comparison tool that visualizes the differences between multiple tables at various levels

of detail. Instead of showing the entire table of each step, it might be useful to initially provide

an overview of data changes in terms of row and column differences, before selecting a particular

dataframe to get more details.

5.7 Conclusion

We explored the usefulness of Unravel, a tool that enables structured, drag-and-drop interaction

with always-on visualizations to help data scientists explore and understand fluent code. Through

examination of the R community, we identified several needs related to exploring fluent code. To

address those needs, we designed Unravel which integrates within data scientists’ IDE, helps them

gain transparency about data, and explore fluent code using simple structural edits via drag-and-

drop and toggle switch interactions. Through a first-use study with 14 data scientists, we found

that Unravel facilitated diverse activities such as validating assumptions about the code or data,

finding redundant or equivalent code, and learning about function behavior. Based on our results,

we discussed some ways to generalize Unravel to other programming languages and contexts and

identified future work to better support interactive exploration of fluent code.

72

CHAPTER

6

DEBUGGING

DATA SCIENCE CODE

In the previous chapter, we studied how Unravel can help programmers learn data wrangling by

exploring and understanding code through structured explorations, code and output highlights,

automated function summaries, and interactive outputs. However, the study did not consider how

Unravel might be used in a realistic scenario where a data scientist is in the process of data wrangling

for the purpose of an analysis. Data wrangling requires data scientists to meticulously validate the

data for potential problems, apply numerous transformations, rinse and repeat. The problem is

exasperated when data scientists make mistakes during this process that either result in runtime

errors or worse yet, silent data-related issues that break analysis downstream such as visualizations.

There is a lack of research focused on helping data scientists understand, explore, and identify

data-related issues such as missing elements, unexpected values, and bugs in the code.

To address this gap, we built extensions to Unravel that helps data scientists debug data wrangling

code. We added a Data Details view that automatically displays descriptive statistics and potential

data quality issues for all columns of a dataset and for each transformation step. To help data

scientists better understand code behavior, we also added a Function Help feature that allows

users to click on functions on the Code Overlay to open the documentation within the IDE. In a

user study with 18 data scientists, we found Unravel helped data scientists explore data wrangling

code, triangulate and validate many assumptions about problems in the code or data for each

transformation through the code, interactive outputs, and data details. We discuss the design

implications of the future interactive exploration tools for data science programming.

73

6.1 Motivation

Data scientists spend a significant amount of effort learning, using, and debugging data trans-

formations to prepare the data for analysis. Data wrangling is a tedious and error-prone process

because it involves iterating on numerous data transformations so that it’s ready for a given analysis

task [Ker19]. In machine learning, data scientists have to iterate on different model features, architec-

tures, and hyperparameters [Ame19]. One key characteristic of data wrangling code is that it involves

“exploratory” programming [Ker17a], producing messy code that can introduce data-related issues

that go unnoticed until an analysis is performed. Currently, there are tools for organizing the messy

code such as Gather [Hea19] or comparing versions of code like Verdant [Ker19]. However, it is also

important to understand and validate those changes that result from the data scientist’s transfor-

mations. This is made difficult when data already comes with issues such as missing values, or

outliers that affect analysis downstream. To deal with these issues, data scientists are forced to write

additional code to perform these checks in a data wrangling pipeline. In other words, data scientists

have to engage in “yak shaving”, what you are doing when you’re doing some stupid, fiddly little task

that bears no obvious relationship to what you’re supposed to be working on.” [Bro00]

Recent research has studied ways to help data scientists explore and comprehend data trans-

formations. For example, Datamations uses animations to visualize and explain common data

transformation pipelines in R [Pu21], and this idea has been further explored in web-based tools

that visualize how a table is transformed from one step to the next with Tidy Data Tutor [SK22] for

R, and Pandas Data Tutor for Python [SL22]. There are also tools such as Data Wrangler [Kan11;

Hee21] that help compose transformations by using GUI-based interactions to preview and exe-

cute transformations reducing the effort to code. While these tools by themselves are useful for

exploring and understanding code, the tools do not remove the manual validations required to

ensure data is being transformed properly. Data scientists have also expressed the need to integrate

data exploration tools within their familiar working environment like Jupyter Notebook [Dro20].

However, there is a lack of research around tooling within a larger programming environment such

as Integrated Development Environments (IDEs) to support them in learning about, and debugging

data wrangling code for exploratory analysis.

We address the issues related to performing manual validations on data, understanding data

wrangling code, and integrating learning tools within data scientists’ workflows with Unravel [Shr21b]—

an in-situ tool for the RStudio IDE designed for data scientists to explore, understand, and debug

data wrangling code and output. Shrestha et al. [Shr21b] found that structured explorations of

data wrangling code and output is useful when paired with always-on visualizations that provide

at-a-glance information about the changes that have occurred for each step (e.g. data shape). The

authors also found that highlighting correspondences between the code and the output helped data

scientists validate assumptions about code behavior and expectations about the data. However, it is

unclear how well Unravel can support data scientists during exploratory analysis tasks, especially

with regards to both identifying potential data smells [Sho22] and helping them identify mistakes

74

Figure 6.1 Data scientists can use Unravel to explore, understand and debug data wrangling code and data.
Users can unravel code and interactively explore it on the Code Overlay (A). Users can click on hyperlinked
functions to open the Help documentation page for the function (B). The Data Details tab displays an
overview of each column of the dataframe at a particular line with the column (variable) name, its type,
the number of unique elements, a missing versus not missing bar, a histogram and potential problems
(C). To examine more details for each column, the user can then click on the carat icon to display more
statistics and potential issues (D).

they make while writing data wrangling code. Wang et al. [Wan22] explored an interaction model

called Diff In The Loop (DITL), which emphasizes providing data and distribution differences for

versions of data wrangling code in Python. While data diffs are important to convey, our formative

interviews with 8 data scientists revealed that there is also a significant amount of time spent verify-

ing data quality issues (e.g. missing values), and they find that exploration of data wrangling code is

difficult because they have to manually edit code to track changes, or selectively execute code to

isolate and validate particular outputs for issues.

Based on our insights from the formative interviews, we built extensions to Unravel in order

to reduce the manual efforts of validating code behavior and transformations, as well as identify

potential data quality issues. Unravel eases code exploration by turning code into an interactive

overlay within the IDE and structured editing of a data wrangling code. We extended Unravel with

automated data quality checks in the form a “Data Details” view, which displays descriptive statistics

about particular types of columns (e.g. numeric versus categorical), inline histograms as always-on

visualizations to display these statistics. We conducted a user study evaluating these design features

and found that Unravel and the Data Details view supported data scientists in both exploring code

75

and data, as well as debugging data quality issues and mistakes in the code.

The contributions of this paper are the following:

1. An in-situ interactive tool called Unravel that we demonstrate reduces data scientists’ data

wrangling efforts by providing structured explorations of data wrangling code and automated

data quality checks for the code and output at each data transformation step.

2. Through a user study with 18 data scientists, we provide insights on the design tradeoffs of

Unravel for debugging data issues, and point towards future work to improve ways we can

help reduce friction to data wrangling programming.

6.2 Related Work

Data science tools to manage code and outputs. Researchers have developed tools that help data

scientists write and modify code. Kery & Myers [Ker17a] have found that data science programming

is characterized by exploratory programming, which can lead to disorganized and ephemeral code.

Tools like Gather [Hea19]help analysts find, clean, recover, and compare versions of code in cluttered,

inconsistent computatl notebooks like Jupyter. To explore alternative code in notebooks, Fork

It [Wei21] uses a technique to fork a notebook and directly navigate through decision points in a

single notebook. We designed a just-in-time learning tool to explore code by allowing temporary

exploration through interactive code overlays and structural edits on the code itself, for example,

by enabling, disabling or reordering lines. To help data scientists automate writing data wrangling

code, Wrex [Dro20] uses programming-by-example. Similarly, mage [Ker20] is a tool that helps users

generate code based on the modifications made from interacting with dataframes. Unravel builds

on these by helping data scientists understand and iterate on the human or machine-synthesized

code.

Understanding data science programming. Prior work has explored some tools to help data

scientists understand code. For example, Lau et al. [Lau21]’s TweakIt is a system designed to help end-

user programmers collect, understand, and tweak Python code within a spreadsheet environment.

There are also tools that help data scientists visualize how common data wrangling operations work.

Pu et al. [Pu21]’s Datamations tool animates dataframe wrangling and visualization pipelines in

R.Datamations automatically processes fluent code in R using tidyverse [Tida] packages and

provides a paired explanation and visualization of each step in the chain. Unravel is designed as

an interactive tool used within RStudio IDE to allow opportunistic learning and debugging of data

wrangling code. There are also web-based tools like Tidy Data Tutor that visualizes functions in R to

help data scientists visualize how those functions transform data [SK22]. pipediff [Fab22] is an

RStudio plugin that highlights the differences between two adjacent steps in a data transformation

pipeline within the IDE. For data quality checking there are fewer tools available.

Debugging data wrangling code and data. More recently, there has been some focus on data

quality issues and tooling to help fix them. Diff In The Loop (DITL), emphasizes the idea of displaying

76

data and distribution differences for versions of data wrangling code [Wan22] during exploratory

analysis work. Our work is most closely aligned with DITL with regards to problem motivation and

some aspects of the design. While Wang et al. [Wan22] uses the idea of code snapshot differences, we

focus on transformation differences in a data wrangling pipeline for one version of the code at a time.

The DITL prototype also shows various descriptive statistics and visualizations like histograms and

their differences between these code snapshots, which can be useful for debugging transformations.

Our approach shows distributions using in-line histograms as an always-on visualization for each

step, and we track changes between transformation operations not code versions. We complement

this work by also focusing on data quality issues as yet another primary concern in the data wrangling

process. There is also a web-based tool called Rill Developer [RD22] that automates and updates data

quality checks for SQL tables while the user types queries. Our Data Details view automates checks,

but we do not implement live programming for the sake of simplicity and reducing potentially

distracting updates while typing.

There has also been some work on validating specific types of input that is common to both

programming in general and specific to data science programming. Programmers might omit input

validation since the inputs can appear in many different formats. For example, a string can be

represented in many different ways that describe domain-specific formats such as dates (“2022-06-

02”). Scaffidi et al. [Sca08] explored the idea of enabling programmers to validate these inputs by

using the idea of a “tope”: an application-independent abstraction describing how to recognize and

transform values in a category of data. The authors created an interactive application that allows

one to specify the format of a string for example, which the system can use to flag valid versus

invalid inputs. This was found to help improve the accuracy and reusability of validation code and

facilitates data cleaning such as duplicate identification. Recent work in program synthesis and

programming-by-example also builds on this idea by making it easier for programmers to teach a

system to learn how to transform certain types of inputs for refactoring [Ni21] or identifying regex

input patterns [Zha20b]. While our work is not specifically designed to form and identify patterns of

input types, we use type-specific validation to display potential problems that are specific to the

data type. For example, warning programmers about extreme values in numericals or miscoded NAs
in string values such as empty spaces. The “topes” idea, Ni et al. [Ni21]’s mixed-initiative technique

to identify and valid common transformation, and Zhang et al. [Zha20b]’s interactive programming-

by-example technique to form regexes could further improve our system by allowing a user to be

more specific about input formats for robust validation.

6.2.1 Formative Interviews and Design Goals

To better understand the common pain points of exploring data wrangling code and the types of

data quality issues that are commonly dealt with, we interviewed eight data scientists who frequently

use the RStudio IDE to wrangle data in R. In our interviews, we focused on how they perform data

wrangling, how data wrangling fits within their IDE workflow, what tools they use or have used

for checking data quality issues, and what difficulties they face as they wrangle data. These data

77

scientists (F1–F8) provided several insights that guided the design goals for Unravel and the new

Data Details view to diagnose issues with the code or data.

For exploration of data wrangling code and output, data scientists expressed that current tools

make it difficult to navigate the many steps in a transformation pipeline, and understanding how the

code and output corresponds with each other. All of the data scientists made heavy use of features

within RStudio that helps them explore data. F4, F5, and F8 talked about how they typically start by

previewing the first or last few rows of the data and the column or variable types. However, this is

typically insufficient since console outputs in IDEs like RStudio “may not reveal potential issues with

data like missing values. ” (F4) Similarly, F1, F2, and F3 talked about how they also have difficulty

“catching subtle issues” (F1) like specific values that one has to normally write code to filter out. This

process is made difficult when there isn’t an interactive way to explore a data table, with a few data

scientists (F2, F4, F8) expressing that while they do make use of interactive tables in RStudio using

View function, it can be hard to manage all of these ad-hoc tables in the IDE. Finally, data scientists

had trouble isolating individual transformation steps to understand and validate changes that they

have made to the data. These issues altogether lead to multiple views and tools used for exploratory

checks that can take a data scientist out of context from their data wrangling code. Thus, our first

design goal is the following:

D1: Data wrangling tools should make it easy to navigate and summarize the outputs of

transformation steps in a consolidated view that reduces context switching.

Data scientists expressed that a significant portion of their time is spent on checking data quality

issues, and validating each transformation of the data. When exploring data for the first time, all data

scientists described common checks that they perform manually by writing code such as checking

for variable types (e.g. string versus a number), missing values (NAs), and miscoded [Gre19]NAs values

(e.g. -99, “-”, etc.), outliers, unexpected values, distribution of variables, and descriptive statistics

(e.g. ranges). F3—F5 described using a package in R called skimr [War22]which summarizes these

checks and descriptive statistics into a text output, but this still didn’t allow “interactive introspection

into each of these characteristics” (F3). F1, F4, F5, and F6 found histograms of variables in particular

is quick and easy way to understand the characteristics of the dataset as a whole. This leads us to

our second design goal:

D2: Data wrangling tools should help data scientists find mistakes in their code and include

automated descriptive statistics and checks after every transformation.

6.3 Design and Implementation

We present the implementation of the extensions we added to Unravel: Code Overlay enhancements,

Function Help, and the Data Details. The other existing features and their design has been discussed

in [Shr21b]. We discuss our design decisions for these extension features to support our design goals

in Section 6.2.1.

78

Figure 6.2 A user can examine extra details about the column for the dataframe at each line displaying a
type-specific statistic such as a count table (A), and potential issues (B) for the type such as miscoded NAs
like “-” for categorical columns.

6.3.1 Exploration Mechanics

We added a couple of enhancements to Unravel to make it easier to explore and debug data wrangling

code in R. The previous study on Unravel did not explore how the broken transformation steps and

their associated error messages through the function summaries could help data scientists debug

data wrangling code. We decided to explore this to support D2 with respect to finding mistakes

in data wrangling code by exploring how the Error change type color can act as an always-on

visualization providing an immediate visual cue that the pipeline is broken. We implemented an

error-forward strategy when dealing with errors in the transformation pipeline where we still render

code that results in an error so that data scientists can still explore and understand the code. They

can also flip off lines that have errors and read the error message through the function summary

feature to understand the root cause of the broken data wrangling pipeline. This supports debugging

code-related errors that can occur by rendering up to the point of the problematic line. If a line

causes other subsequent lines to fail, Unravel will display a message through the function summaries

that “Previous lines have problems.” Data scientists can then work up to the first line that broke and

79

Figure 6.3 The columns referenced in the Code Overlay can now be referenced in arbitrarily nested expres-
sions, making sure to highlight the changed or new columns.

read the error message to fix their issue.

6.3.2 Code Overlay

One central feature of Unravel is the Code Overlay which takes data wrangling code written in R and

makes it interactive for ease of exploration and debugging. A limitation of the Code Overlay was that

the code highlights did not render for arbitrarily nested expressions that contained variables [Shr21b].

The authors reported limitations regarding the code highlighting due to the complexity of program

analysis. One challenge is that R allows functions’ parameter values to be function calls themselves.

This means that for almost all functions in R, one could include column references that are inside

arbitrarily nested function calls as the value of function parameters. The authors scoped Unravel

to initially handle the simpler parameter values like the example below. Another challenge is to

disambiguate between a column with the same name as a function making sure only to highlight

the column.

We extended Unravel to solve these challenges by analyzing the AST of data wrangling code

further. We make use of the R function getParseData() to assist in the analysis of the AST by

storing the parse tree of each line’s code. Symbols that correspond to column names are stored

which are used to identify the text to highlight in the Code Overlay and to differentiate them from

function calls. This helped us solve the challenge of finding column references in arbitrarily nested

expressions. We also improved the way code highlights work by using pattern matching on the code

text such that function calls inside functions like ‘summarize()‘ are excluded when highlighting

columns. This solves the challenge of differentiating columns from function calls and therefore

highlights relevant columns in arbitrarily nested calls (Figure 6.3).

6.3.3 Function Help

To help achieve D1, and partially D2 (Section 6.2.1), we added the idea of hyperlinked functions on

the Code Overlay that would open up the help documentation page for that function on RStudio’s

80

Figure 6.4 A user can click on a hyperlinked function to open its documentation in the Help pane.

Help pane. Programming in R involves a lot of functional programming, and the documentation

is usually geared towards how to use these functions which can be access through a dedicated

Help pane. To achieve D1, we decided to use this Help pane to open documentation for functions

whenever a data scientists uses Unravel and is confused with the functions used. We also open the

Help pane besides the Viewer pane where Unravel is rendered so that data scientists can read the

documentation alongside the tool.

The process of forming and rendering these hyperlinked functions on the Code Overaly involves

a similar to the process behind collecting column references to highlight in the code text and

output (Section 6.3.2). We make use of the getParseData function to extract the AST for the code

at each line. We then analyze the AST and store the functions used in a particular line and store

metadata about the function name and which package it belongs to. The metadata is extracted

using the namespace search mechanism in R that helped us find the package that the function

belongs to. This information is used on the frontend to wrap a function call text such as group_by
with a hyperlink. When the hyperlink for the function is clicked, we request the server to invoke

help(<function>, <package>) function to open up the documentation on the Help pane in

RStudio.

6.3.4 Interactive Tables

To achieve both D1 and D2, we enhanced the interactive tables by adding better clues on grouped

dataframes, column types, and search by value.

We enhanced features related to conveying subtle changes and important variable information.

One of the common patterns in data wrangling is grouping the data according to certain variables and

then doing an aggregate computation such as finding the average for each group. While Unravel does

implement color change schema to visualize the types of changes occurred, grouped dataframes

require some additional information such as the number of groups. We added this information on the

interactive table that displays the dataframes whenever there is a group_by operation (Figure 6.6).

In addition, we also added the type for each column of the table like <int> for integer or <chr> for

character, mimicing the console output format for dataframes when using the tidyverse R packages.

Data scientists in our formative interview mentioned that finding erroneous values that don’t

meet their expectations are often easy to miss (Section 6.2.1). For example, miscoded NAs are

81

A

B

C

Figure 6.5 Users can search for particular cell values within the Table output (A), relevant columns within
the Data Details table (B), and expanded detail tables for a column which is useful for categorical variables
(C).

problematic because they can be used as a placeholder for missing values (e.g. -99) yet go undetected

using conventional approach of searching for NAs since they are numbers. To facilitate this process,

we added search bars (Figure 6.5) for the interactive table so that data scientists can search for

specific values that will be matched via pattern matching. This same functionality is added for the

Data Details tables discussed in the next section.

6.3.5 Data Details

To achieve D2, we implemented a new view that we call Data Details (Figure 6.1, Figure 6.2). In our

formative interviews, several participants were expressing the need for quick summary statistics on

all of the variables of a dataframe. They mentioned using built-in functions in R such as is.na or

packages like skimr [War22]which provides a static printout of the column types, their descriptive

statistics (for e.g. IQR), number of missing values, and a basic histogram showing the distribution of

the column. Along with automating the summary of variable characteristics, data scientists also

desired reducing the manual writing effort to perform data quality checks that can be present for

82

Figure 6.6 Users can take a glance at the number of groups for a grouping variable.

Figure 6.7 Users can examine summary statistics about a particular column when expanding its row, and
be aware of potential issues This an example of details for a numeric type.

any type of dataset such as missing values or NAs, miscoded NAs, outliers, and unexpected values.

We implemented a Data Details interactive table next to the interactive output table for each

transformation step in the code that displays the type, number of unique elements, number of

missing versus not missing elements, the distribution, as well as the potential problems in the

column. Whenever a data scientist wishes to view the details behind a particular dataframe in a

transformation pipeline, they can click on the “Data Details” tab. They are then presented with

an interactive table that contains on the high level descriptive statistics. We used existing built-in

functions like summary for numeric variables (Figure 6.7) and functions like count from the dplyr
package for counting values in categorical variables. Each column allows further exploration of

these details describing the data type (numerical versus categorical) in more detail and the potential

issues they have to fix.

6.4 User Study

We conducted a 60-minute long usability study over video conference with data scientists to under-

stand how Unravel can assist them in understanding and debugging exploratory data wrangling

83

code for exploratory analysis. We investigated the following research questions:

• RQ1: Does Unravel help data scientists explore and understand data wrangling code for

exploratory analysis?

• RQ2: How does Unravel help them identify data quality issues and debug data wrangling

code?

6.5 Method

6.5.1 Recruitment

We recruited participants (Table 6.1) through an online advertisement of the study on Twitter where

data scientists are increasingly active [Moc22]. To be eligible for the study, participants had to self

report basic experience with R programming. We recruited 18 data scientists (10 males, 8 females)

who had varied levels of experience in data wrangling and programming in R. On a 5-point Likert

scale, participants self-reported their experience in data wrangling (µ = 3) and R (µ = 3.1), with a

minimum of 1 and maximum of 5. Participants worked in software engineering (3), research (3),

statistics (2), education (2), genetics (2), psychology (2), data science (1), social work (1), marketing

(1), and IT (1).

6.5.2 Study Setup

The study was conducted remotely with participants sharing their screens over a video conferencing

tool. For the programming environment, we used RStudio Cloud IDE, a web-based version of the

RStudio IDE. Since this is a browser-based IDE, participants were able to use the tool on their

computers within their own choice of browsers and configurations.

Study Phases: Each study consisted of three sessions: a demo session and three debugging tasks.

For the demo session of Unravel, we showed participants how to use the tool with some basic code

snippets. The demo task covered the main components of Unravel: code overlay to explore the

different lines of the code, the shape and summary boxes always-on visualizations, the interactive

data table, and the Data Details. We nudged participants if they were stuck or confused about how

to use the tool. After the completion of the study, we administered an exit survey to measure the

usefulness of Unraveland to ask for additional feedback from participants.

Instrumentation: We instrumented the Unravel and RStudio to log all successful user code

executions and Unravel-specific feature usage. For Unravel, we logged several events for unraveling

code, clicking on the intermediate lines in the code overlay, clicking on function summary box,

clicking on hyperlinked functions to open documentation, clicking the toggles, and reordering

lines. To better understand how the interactive table and the Data Details were being used, we also

logged the counts of “focusing” on the tables (via mouse hover event). To analyze all of this data, we

computed the count of logged entry by type, and report the counts, average and standard deviation

across participants.

84

6.5.3 Debugging Tasks

For the three debugging tasks, the participants were tasked with exploring analysis scripts written in

the tidyverse [Tida] R using the dplyr and tidyr packages with the goal of fixing the data wrangling

code to produce a visualization. The three datasets were based on #TidyTuesday datasets [Moc22],

which included data quality issues by themselves, and we further modified them to include common

data smells found in prior work [Sho22] and the issues mentioned by participants in our formative

interviews.

Each script was scaffolded with code to import the dataset, wrangle the data, and visualize

it to explore relationships between variables. Participants were tasked with thinking aloud while

understanding, exploring, and debugging the data wrangling code using Unravel. We did not prevent

participants from writing their own code to explore and validate the dataset using RStudio. This was

done to investigate when participants would reach for Unravel rather than writing their code. The

tasks were designed to examine how data scientists of varying experience would discover and debug

issues in common types of data wrangling operations like selecting, filtering, mutating, grouping,

and summarising dataframes. In particular, we designed 3 tasks varying in both wrangling operations

and types of data quality issues reported:

A. Coffee Ratings: In this task, participants examined a script that visualizes total coffee ratings

for countries around the world using a boxplot.

Problems: The data wrangling code involved filtering out missing values (NAs) or miscoded

NAs like “ ” (empty space) or 999. The missing values are not handled in data wrangling code

which produces an incorrect plot containing boxplots for total cup points by top 12 countries.

The inclusion of miscoded NAsmakes this process harder because they are no longer detected

with explicit checks for NAs.

B. Chopped: For this task, participants examined a script visualizing the average episode ratings

for all seasons of the Chopped TV Show.

Problems: The data wrangling code included an incorrect order of summarizing statistics

about particular groups of variables before grouping the data by those variables. Grouped

calculations is a common programming pattern in data wrangling yet it can be confusing

because it collapses large tables into a smaller one by aggregating values according to groups.

The data also contained a problematic value (-99) that fell outside of the range of expected

values for a rating (0-100), which affects the visualization by producing a very low average

rating for season 9.

C. Crop Yields: Participants examined a script that analyzed the global crop yields for major

countries like USA, Brazil, China, and Russia.

Problems: The data wrangling code reshaped the dataframe from a wide form (many columns)

to a long form (many rows). However, the existing code using pivot_longer is used incor-

rectly because it does not produce the right column name for the crop yields value. The code

85

included another mistake where the year column was converted from a numeric type to a

character (string).

Participant Gender Field Task A Task B Task C Wrangling Exp. R Exp. Skill Level

P1 M Software Engineering 3 3 3 3 2 Beginner

P2 M Software Engineering 3 3 3 4 3 Experienced

P3 M Software Engineering 3 3 3 4 2 Beginner

P4 M Organizational Pyschology 3 3 4 3 Experienced

P5 M Education 3 3 3 5 4 Experienced

P6 M Education Technology 3 4 4 Experienced

P7 M Statistics Education 3 3 3 Beginner

P8 F Cancer and Genetics 3 3 3 4 Experienced

P9 F Pyschology 3 2 3 Beginner

P10 M Marketing 3 3 3 3 Beginner

P11 F Statistics 3 3 3 2 Beginner

P12 F Genetics 3 3 3 4 4 Experienced

P13 F Social Work 3 3 3 Beginner

P14 M Ecology 3 3 3 4 4 Experienced

P15 F Pyschology 3 2 3 Beginner

P16 F Public Policy 3 3 3 3 4 Experienced

P17 F Data Science 3 3 3 3 3 Beginner

P18 M IT Enterprise 3 3 3 4 4 Experienced

Table 6.1 Demographic information and task completion results. The cells are marked with a 3 to indi-
cate they successfully completed the tasks (Section 6.5.3) by fixing all the code and data
mistakes. The indicates that they were not able to start or complete the task. Wrangling
and R Exp. are the participants’ self-ratings for data wrangling and R experience using a
likert scale of 1-5 (Novice to Expert). We used the average of data wrangling and R skill
ratings to bucket beginners (2–3.5) and experienced (above 3.5) to facilitate analysis of
the user study.

For each task, we included inherent issues with the data as well as mistakes in the data wran-

gling code to understand whether Unravel can help before analysis. To observe whether and how

participants reached for Unravel or performed their own checks, we did not prohibit participants

from using whatever code they felt necessary to write to understand and fix the issues with the data

wrangling code. Further, this helps in determining in what situations Unravel may or may not have

been helpful.

6.5.4 Analysis

We used a mixed-methods approach to analysing the results of our study through the two research

questions:

RQ1: Does Unravel help data scientists explore and understand data wrangling code for ex-

ploratory analysis? To answer RQ1, we conducted qualitative analysis by first taking notes according

to which features were used and in what way to facilitate exploration and understanding. We then

86

Table 6.2 Post-Study Survey Responses

Likert Resp. Counts1

% Agree SD D N A SA Distribution2

50% 50%0%

Clicking on functions to view its documentation was useful. 100% 0 0 0 5 13

The Data Details view helped identify potential issues with data. 94% 0 0 1 4 13

Clicking on lines to view intermediate data was useful. 94% 0 0 1 5 12

The data change color schema helped describe transformations. 89% 0 2 0 2 14

The Data Details view helped describe transformations. 89% 0 2 0 5 11

The dataframe shape information of row and columns helped validate changes. 89% 0 1 1 4 12

The tool was useful overall. 89% 0 0 2 5 11

Invoking Unravel through code highlight and Add-in was useful. 83% 0 0 3 9 6

The summaries helped describe the effect of functions. 83% 0 1 2 3 11

The toggle switches to enable/disable lines helped explore the code. 83% 0 1 4 5 7

The ability to reorder lines helped explore the code. 72% 0 1 4 4 9

1 Likert responses: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), Strongly Agree (SA).
2 Net stacked distribution removes the Neutral option and shows the skew between positive (more useful) and negative (less useful) re-
sponses.

Strongly Disagree, Disagree, Agree; Strongly Agree.

performed open coding on our notes to look for initial patterns, and related the codes to form higher

level themes that describe how the Unravel features helped the participants. To triangulate our

findings, we analyzed the log events (see Section 6.5.2) for patterns that help explain these themes.

RQ2: How does Unravel help them identify data quality issues and debug data wrangling code?

To answer RQ2, we conducted qualitative analysis by examining when and how participants used

Unravel’s Data Details view to identify data quality issues, and debug the data wrangling code

mistakes. Similar to RQ1, we conducted qualitative analysis on notes taken according to the usage

patterns we observed during the study. Then, we analyzed the logs to triangulate and support our

qualitative findings.

6.6 Results

We present both of our qualitative and log analysis results from the user study, describing the

behaviors we observed, the strategies used, and the feedback participants provided. The results

of our user study suggest that Unravel addresses the design goals we formulated in Section 6.2.1.

Participants found that Unravel provided helped them explore data wrangling code when they

felt confused about transformations (D1), and used Data Details to further understand and most

importantly catch issues with both the code and the data (D2). In this section, we discuss our study

results through the context of our design goals.

87

18

4

40

20 5

7

38

21

22

28

57

13

42

7

23

13

23

11

33

3

37

26

42

4

6

8

35

13

70

14

48

12

11

21

12

26

Beginner [2,3.5] Experienced (3.5,4]

11 3 9 10 13 15 17 1 7 12 4 14 8 5 18 2 16 6

0

20

40

60

80

Participant

C

od
e

E
xe

cu
tio

n
or

 U
nr

av
el

in
g

E
ve

nt
s

Context

RStudio

Unravel

Figure 6.8 Number of times participants executed code in RStudio or used Unravel to explore code.

6.6.1 Post-study Survey Results

On a 5-point Likert scale (Table 6.2), participants positively rated the usefulness of Unravel overall

(µ = 4.5). Participants rated the function click to help documentation (µ = 4.7), clickable lines for

viewing intermediate dataframes (µ = 4.6), the change color schema (µ = 4.6), Data Details to catch

potential issues (µ = 4.7) and understand transformations (µ = 4.5), and the always-on visualization

of the dataframe shape (µ = 4.5) as the most useful features. Other features were lower in rating

such as function summaries (µ = 4.4), drag and drop to reorder lines (µ = 4.2), invoking Unravel

by highlighting code and using it through the RStudio Addins (µ = 4.2), and toggle switches for

enabling or disabling lines (µ= 4.1). Some of the existing features were rated similarly in the first-use

study [Shr21b], and the new extensions such as function click to help documentation and Data

Details were thought to be useful features.

6.6.2 RQ1: Does Unravel help data scientists explore and understand data wrangling

code for exploratory analysis?

Interactively exploring data wrangling code and output: Overall, Unravel made exploration of

data wrangling code and output easier because “it offers a lot of information in a very compact way.”

(P14) Several features of Unravel helped participants interactively explore the code behavior and

the dataframe transformations (D1).

As shown in Figure 6.8, Unravel was used in bursts whenever participants were trying to under-

stand code behavior or the resulting dataframe from the wrangling. Beginners and experienced

participants did not differ much on their frequency of using Unravel or executing code in RStudio.

Beginners unraveled code 124 times, and executed code 268 times in RStudio while experienced

88

93

87

39

4

74

8

17

8

68

Total lines clicked: 341

50

81

6

13
18

9

27

42

79

Total lines clicked: 282

Beginner [2,3.5] Experienced (3.5,4]

1 3 10 17 7 13 11 15 9 4 18 2 16 14 8 6 12 5

0

25

50

75

Participant

Li

ne
s

C
lic

ke
d

Tasks Completed

1

2

3

Figure 6.9 Number of times participants clicked on the intermediate lines in the Code Overlay.

participants unraveled code 127 times and executed code 294 times. We observed a mix of beginners

and experienced participants making use of RStudio features during their examining of data, such

as the Environments pane (P5, P7), the interactive table using the View() function (P5, P6, P9, P10,

P18) that holds all variables such as the dataset variable, and a few used the interactive console (P4,

P5, P10).

When participants were using these other views, they eventually decided to use Unravel when

they needed to view both the code and the output in the same window. When trying to isolate lines,

some participants (P4, P8, P9, P10, P12, P13) sometimes used Toggle Switches (57 times). For task B,

many participants (P1, P3, P4, P7, P9, P10, P11, P14, P16–18) used the Drag to Reorder feature (33

times) to explore and fix the incorrect order of the existing code where group_by step is placed after

summarize. P13 favored the Unravel’s interactive tables when checking dataframe outputs because

of the ease of exploring them in the tool: “I’m a very slow coder, I change things and come back and

mess things up each time. [In Unravel], I can see that I’m messing up if my dataset has a strange

shape and not over on the console. I check the console output but it’s not as easy to understand as

what happened [in Unravel].” Experienced participants like P5, P13, and P14 liked the fact that each

line comes with its own output as well as the Data Details, a clear difference from the traditional

approach of writing a single expression pipeline and only seeing the final result: “What’s cool is that

what happens below [on the table] depends where you are on the [code line] so it’s for each line.

Usually I only look at beginning data and final output. The same for data details.” (P5)

Participants generally made heavy use of clicking on lines to focus on particular transformation

steps to validate their understanding of the code. While all participants made use of this core feature

of Unravel, beginners clicked on lines more than experts. We found this to be true in the logs as

well. Figure 6.9 visualizes the total lines clicked which shows how beginners clicked 341 times, and

89

22

14

8

7

6

6

6

5

5

5

4

3

3

2

1

1

1

1

c

drop_na

na_if

rename

as.character

mean

str_replace_all

mutate

group_by

is.na

str_to_title

filter

pivot_longer

select

n

summarize

fct_reorder

fct_lump

0 5 10 15 20

count

F
un

ct
io

n

Figure 6.10 The count of Function Help clicks and the corresponding functions sorted by highest to lowest
count.

experienced participants clicked 282 times. One trend with this result is that participants who clicked

through the intermediate lines of data wrangling code generally completed more tasks besides two

exceptions: P11 who was able to complete 2 tasks despite the low number of clicks, and P6 who

was having difficulty learning tidyverse R style for the first time as a heavy base R user. Clicking on

intermediate lines does not necessarily lead to more success as we observed some participants were

confused despite going through steps of a data wrangling pipeline, and experienced participants

can better “visualize data operations” (P12) requiring fewer inspections.

Understanding a function’s purpose and behavior: Unravel was able to achieve D1 by providing

several ways of understanding unfamiliar code.

The Function Help was rated as the most useful feature of Unravel (Table 6.2) and we observed

most participants using it to understand functions. This feature helped both beginners and experts

and according to the logs, beginners clicked on functions more (57) than experts (43) overall. Fig-

ure 6.10 shows the most commonly clicked functions which reveals an interesting pattern: some

functions are more intuitive than others like c, drop_na, na_if and rename. While other func-

tions are confusing like the fct_lump or fct_reorder functions which don’t clearly convey its

purpose, and group_by or summarize which participants found confusing since it’s difficult to

visualize aggregated computations and how summarize drastically changes shape was confusing.

The filter was sometimes confused by some participants (P9, P7, P11, P10) to mean filtering out

rows that meet a criteria when they found that it meant selecting rows that meet for the criteria.

The n function in Task C was confusing to participants because it was unclear whether it was used

to count the number of rows of a column or in each group’s column.

Beginners like P1, P2, and P3 made a lot of inferences as to the purpose of functions since they

90

44

101

47

68

13

94

19

83

47

38

29

45

45

24

23

15

22

12

Table Focus: 480
Data Details Focus: 289 102

92

85

89

31

76

36

32

26

39

48

17

39

21

29

15

19

14

Table Focus: 395
Data Details Focus: 415

Beginner [2,3.5] Experienced (3.5,4]

10 17 7 3 11 15 13 9 1 18 4 16 2 8 14 12 5 6

0

50

100

150

200

Participant

F

oc
us

 E
ve

nt
s

Table Type

Data Details

Table

Figure 6.11 Number of times participants are focusing at the output Table and the Data Details.

were not too familiar with R and validated their assumption using the Function Help. For example,

when clicking the pivot_longer on the Task C, P2 was happy to have refrenced the documentation:

“Oh values_to! Very helpful to have a link to the documentation here.” Experienced participants also

made heavy use of the Function Help feature when dealing with unfamiliar functions specifically in

the tidyverse R API. P6 admitted that they were “a base R person” and they clicked on several features

around the group_by and summarize function which they were particular confused on for the

Task B. Even for experienced participants, however, they still reached for function documentation

for functions they don’t use often. Other experts like P8 and P10 made use of the function click to

help when they were confused by the fct_lump because they don’t use it much in their coding, and

pivot_longer “which is always confusing to visualize and memorize” (P10) despite having used it

frequently in the past.

However, we also observed that validating one’s understanding of code behavior required more

than reading the documentation for functions. Beginners like P9 and P11 would often click on

particular lines, and examine the interactive output of the dataframes at those lines to validate

their assumptions about how the code behaves. They were able to make guesses based on how the

output changed after making a change like reordering lines (P9), or viewing the function summary

for the line (P11). P6 who was experienced in R but not in the tidyverse R discovered the behavior of

functions when they tried to make a change that resulted in errors, for example, incorrectly using

the na_if to replace values as NAs by not including it inside of a modifying function like mutate;

in this process, P6 discovered the mutate function that helped them use na_if properly.

Understanding R code: Since participants had varying levels of experience with R, understand-

ing code sometimes required other types of interactions with Unravel. While the Function Help

feature was useful in situations where participants were confused about unfamiliar functions, it did

91

not help beginners such as P9 or P11 understand how data wrangling operations compose together

in relation to the task of creating a visualization. In other words, the mere presence of the data

wrangling code and being able to explore it interactively did not help these participants with lesser

knowledge about how to work with data in general. In these cases, participants were able to guess

and validate their assumptions by simply looking at the output. For example, both P1 and P2 who

were quite inexperienced with R were able to guess how filter works based on the name and

validating their assumption by flipping through the rows of the dataframe output table. Similarly, P3

was able to guess as.integer casts a vector to an integer by the name but confirmed this was the

case by examining the type of the column after the operation. We will discuss some of the limitations

of supporting novices in Section 6.7.

6.6.3 RQ2: How does Unravel help them identify data quality issues and debug data

wrangling code?

Unravel helped participants identify data quality issues and code mistakes by using several features

of the tool (D2).

Participants used both the Table and Data Details to validate assumptions. As shown in Fig-

ure 6.11, beginners made less use of the Data Details overall (300) compared to experienced par-

ticipants (436). However, beginners made more use of the interactive Table (488) compared to

experienced group (422). There were no major differences overall between beginners and experi-

enced participants on how much they made use of both tables. However, we observed beginners

exploring the tables heavily compared to experienced participants, who seemed to place greater

importance on checking the data details. Several beginners (P1, P2, P7, P9, P11) used the output

Table by clicking through the ‘Next’/‘Previous’ buttons to flip through the rows of the dataframe

when trying to validate assumptions for a particular column. For example, P11 flipped through

some rows of the output table when they were investigating the -99 outlier in Task B and once

that became laborious switched the Data Details which pointed out the value. P1 cleverly used

the sorting feature on the output table to find the same outlier in Task B. Although hesitant at first,

experienced participants like P4, P5, P8, P12 went directly to the Data Details for every task to save

on time after having success with it initially, instead of doing manual checks.

Unravel helped check assumptions about potential issues through multiple views. We also

noticed an interesting behavior across participants where they triangulated potential issues using

multiple views. Participants examined descriptive statistics about the variables and the potential

issues in the Data Details view, and went back to the table to look for values corresponding to

those issues (e.g. by searching for specific values in the table). For example, P1 searched for the

miscoded NA value of “-” in Task A for the country column in its expanded details within Data

Details. Similarly, P2 made use of the search feature in Task C to validate whether the crop column

contained values with an “_” in the name (cocoa_beans). P16 also made heavy use of the search

feature to validate removing the “-” in the country column in Task A. When things still didn’t make

sense, they explored other lines, and their corresponding code, Table and Data Details. For example,

92

P14 saw how the unique counts for the season column in the last step was 43 instead of the original

45. Confused, they then checked the line before the filter step and saw the missing values in

episode ratings from the missing bar which dropped 2 seasons in the step before. Through these

various elements in Unravel, participants were able piece together and triangulate information

from each of these views: “It’s tough because the tool doesn’t know what you are wanting to do, but

at least you can check things to make sure you haven’t totally broken your code” (P15)

At-a-glance visualizations provided quick validations of data characteristics. Participants

made use of the many always-on visualizations within Unravel to help them validate transfor-

mations.

Participants used the Data Details view to get an overall sense of the columns and quickly catch

issues. The unique number of elements and missingness in the Data Details overview table helped

participants quickly identify and validate issues after transformations. P14 used the unique counts

for the season column when trying to check how the counts dropped in Task B and was able to

spot the missing values in episode ratings that dropped 2 seasons. Participants used the in-line

histograms to spot extreme values. For example, P10, P12 and P13 looked at the histogram of the

total_cup_points column in Task A and saw that it was heavily left skewed. They examined the

expanded details for the column and noticed there was a 0 as a minimum value, and they were able

to filter out that value. P14 was able to spot the incorrect ordering of the group_by after summarize
by taking a peek at the histogram for the season column: “Yeah so that should definitely more than

14 and should be more of a uniform distribution.”

Unravel helped debug data wrangling mistakes. Participants were able to debug data wran-

gling code using Unravel by using the Error visual cue for lines with errors. Often times, participants

either added an extra transformation step in the data wrangling code or modified the existing

lines that resulted in errors. To achieve D2, Unravel’s design allows rendering the code even there

are lines that cause errors, where lines with errors have the Error change schema, highlighting

the summary box red and displaying the error message when hovering over it. Participants were

able to benefit from this design because they sometimes made mistakes of their own. When do-

ing Task A, P1 initially thought “I wonder if [the mutate lines] are out of order in terms of how

you’re supposed to do it in R”, and they re-unraveled the code after switching their order. They

saw the red boxes next to the lines and realized their mistake reading the error message: “that’s

probably not correct because I broke it. Ah, country not found.” P4 made a mistake thinking the

country column in Task A has to be grouped and they write a group_by(country) followed by

a summarize(total_cup_points = mean()). After re-unraveling and seeing the broken line,

they read the error message through the summary box and realize, “Ok it didn’t like that because

mean is missing an argument.” Sometimes fixing code required a combination of breaking the

data wrangling code and validating one’s understanding of how to use the functions through Func-

tion Help feature. For example, P6 tried to use na_if function on its own line to filter out missing

episode_ratings values for Task B, but upon re-unraveling the modified code saw the broken

code: “Ok it doesn’t like that. Why didn’t it like that? Did I pipe it right?” They clicked the na_if

93

function on the Code Overlay and after reading the documentation realized “it’s for vectors, not

dataframes so we need the mutate function.” Once they applied the fix they saw no errors and

carried on.

6.7 Discussion and Future Work

We discuss the broad implications of our findings, future work on improving the interactive explo-

ration of data wrangling code, and identify the ways in which Unravel could be adapted to various

programming languages and contexts.

6.7.1 Better Support for Novice Data Scientists

We found that certain features of Unravel helped novice data scientists in our study successfully

complete tasks, but the tool did not provide adequate support to complete all tasks. The Function

Help was a key feature in helping them understand a function’s purpose. Clicking on lines allowed

participants to be able to focus on particular line’s the code and output. However, as one participant

put it, “[Unravel]was helpful in that I did not have to run every line to view the intermediate data,

but I still have difficulty how to write data wrangling operations and visualizing them.” (P9) While

the scaffolded code in our tasks did help novices learn data wrangling in R by examining the example

code through Unravel, there was a lack of support in helping them write data wrangling code, and be

able to understand why certain operations are needed for the goal of producing a visualization. P12

expressed that “Unravel would be a great tool for teaching using PRIMM”, a structured approach to

planning programming lessons and activities using the Predict, Run, Investigate, Modify, and Make

stages [Sen19]. We incorporated all of these stages besides Make, which requires writing brand new

code. Zhi et al. [Zhi18] had a similar study setup and found that an educational programming game

with “buggy code” is a promising teaching strategy, as demonstrated by lower completion times and

solution code length in assessment puzzles. For our future work, we can look into adapting PRIMM

and continuing the buggy code teaching strategy to better support novices.

6.7.2 Live Programming for Data Wrangling

As discussed in Section 6.6, we found that generally Unravel was able to fit into the workflow of

data scientists in RStudio with some pain points. Participants in our study found it useful to be

able to highlight data wrangling code and unravel it through the Addins and explore within the IDE.

However, all participants desired more liveliness once they explored existing code and wanted to

make modifications. For example, P10 said “if I could somehow edit code [in Unravel] that would

be cool. Then you can see it updating in real time and you don’t have to go back.” P2 expressed

how “having to highlight everything is a little bit weird. It would be really nice if you could it in

the same vein as execute line on editor, it would be a lot more intuitive.” These comments make

sense given these limitations of Unravel. For the purpose of this study, we decided to leave out live

programming because we were focused on understanding how Unravel and its existing features

94

can support data scientists during exploratory analysis, and due to the complexity of updating the

state of the application when incorporating live updates. However, we can take inspiration of tools

like Glinda [DeL21]which implements live programming using a domain-specific language for data

science programming or DITL [Wan22]which also adds the idea of storing snapshots of successful

data wrangling code to revisit for debugging purposes. Lerner [Ler20] also explored the idea of live

projection boxes showing the current outputs within the editor itself which is another potential

solution for a more fluid exploration. We could also take inspiration from Rill Developer [RD22],

an exploratory data tool for SQL which uses similar ideas of automating data quality checks and

displaying them live as a programmer write queries.

6.7.3 Exploring and Highlighting Data Quality Issues

Overall, participants found Data Details feature of Unravel to be valuable in identifying potential

data quality issues but found it to be limiting in a couple of different ways.

Nudging users to validate data issues. One pain point that we observed throughout our study

is that there is a lack of nudges to check the Data Details for steps in the data wrangling code. For

example, P1 who was a beginner said that “if there were any problems I would like there to be some

kind of highlight here like a nudge to click on Data Details”. Experienced participants like P4 kept

forgetting to check Data Details and similarly, P10 said “I think getting used to the fact that each

operation has its own data details. Not sure why I kept forgetting, but that’s very useful actually.” In

other words, while the Data Details was useful to identify potential issues with the data, there wasn’t

enough nudging on the user to check the view. For future work, we can improve the design of the

Data Details such that we incorporate affordances like having a number on the tab, or highlighting

a particular line with problems to catch a user’s attention.

Providing flexible tools to audit problems. A related issue for highlighting problems with the

data has to do with providing full and flexible details about each line in the data wrangling code. P5

mentioned how “One thing that would be super neat to include is what the points in the distribution

correspond to” which is a limitation of the in-lined histograms for each column that others point

out as well (P1, P3). For the in-line distribution, P5 and P10 mentioned how it would be convenient

if one could also customize the type of plot to display for the in-line distribution such as a density

plot. They also mentioned that showing duplicates of the data would be beneficial but warned

that “it’s not easy to handle because it could be duplicates of various columns not just whole row.”

Indeed, we had decided not to check for duplicates because of the fact that it depends on which

columns. However, in our future work, we could provide additional options for both in-line plots

and advanced checks such as duplicates according to certain columns.

Future work on data quality checks. Finally, based on our observations of participants’ and their

feedback, future work should study how to refine data quality checks and warnings for supporting

data scientists in their data wrangling process. There are two usability issues with the way we

designed the Data Details view that became clear during the study. Many participants (P1, P2, P3, P4,

P5, P8, P18) spent time exploring columns that are irrelevant to the task yet attracted their attention

95

due to the missing values bar, or potential problems numbers. The always-on visualization and

statistics for the columns of a dataframe could also become noisy given a large enough dataset. To

mitigate, P1 desired “being able to dismiss warnings like dismissing warnings in the IDE. In Eclipse

I can silence warnings I don’t care about”. Shome et al. [Sho22] explored “a novel catalogue of data

smells that can be used to indicate early signs of problems or technical debt in machine learning

systems.” For future work, a catalogue of common data smells could be used to categorize the

problems on the interface. However, assigning severity to issues and fixing them might always remain

a human-in-the-loop effort. As the authors note “automation however comes at the cost of reduced

transparency as minuscule changes to the input data can cause drastic changes in the trained model”

and a similar sentiment is shared by the authors of dataReporter that automation of cleaning

means “all power is given to the the computer with no human supervision, and investigators are

less likely to make an active, case-specific choice regarding the handling of the potential errors”.

6.7.4 Limitations

We limited the scope of Unravel, the extensions we added, and the user study in order to explore

tools to help data scientists debug and fix data wrangling code.

6.7.4.0.1 Tool limitations:

First, we scoped Unravel to work with certain types of code. For example, Unravel can currently

only unravel a variable that contains a dataframe, a one-liner function calls, and single-table data

wrangling functions in a dplyr [Wic21] and tidyr [Wic19b] fluent code. The output of an operation

in fluent code could produce lists and other structures worth unraveling. While it is possible and

beneficial to render outputs like lists and plots, we currently only support dataframes as the primary

outputs. Second, the set of data quality issues we chose to automatically check only represents a

small portion of the types of quality issues that data scientists face at large. Future research should

look into extending Shome et al. [Sho22]’s idea of paper smells from beyond machine learning.

6.7.4.0.2 Generalizability:

Our findings of the user study might not generalize to other communities. For example, our tool

is focused on R and the tidyverse dialect. It is important to note that some aspects of our findings

might be unique to this project and the R community. Future research should explore how a tool

like Unravel can help the Python, Julia, or SQL communities.

6.7.4.0.3 Participation bias:

One potential limitation of our study is a self-selection bias in our interviewee sample. Our sample

was selected to include those who were interested in learning more about data wrangling in R.

Participants who already are involved with the #TidyTuesday project may have influenced our

sample towards those with the strongest feelings about Unravel. We mitigated this issue by using

96

random sampling and recruiting people of different skill levels with data wrangling and R (e.g. P1–P3

were beginners in R).

6.7.4.0.4 Analysis methodology:

To derive themes from our user study, we used qualitative coding to analyze and interpret our

data which is limited by theoretical sensitivity and the synthesis conducted by the researchers

participating in that process. We followed the guidelines set by Carlson [Car10] and performed a

single-event member check with our results. Our quantitative analysis is limited to events that we

logged and are simply proxies for behavior and strategies used during the study. A more rigorous

comparative study should be conducted in the future to understand how well Unravel helps data

scientists to a control group for example.

6.8 Conclusion

We built extensions to Unravel, a tool that enables structured explorations of data wrangling code

by adding Function Help, Data Details, and Code Overlay and Table enhancements. Data wran-

gling can be a tedious and error-prone process because it requires data scientists to meticulously

explore the data for potential problems, apply numerous transformations, and validate the resulting

changes. Through formative interviews, we identified several types of data quality issues and the

manual checks that are required throughout the data wrangling. Through a user study with 18 data

scientists, we found Unravel and the extensions we added helped data scientists better explore data

wrangling code, triangulate and validate assumptions made about the code or data, and diagnose

data wrangling code. We discuss the design implications and limitations of Unravel and future work

for data wrangling tools for learners, educators, and programmers.

97

CHAPTER

7

CONCLUSION

The thesis statement of this dissertation is:

Data wrangling is an important step in data science programming that requires data to

be transformed into a form amenable for analysis. However, data wrangling is a time-

consuming and error-prone process that requires a programmer to learn and correctly

apply numerous data transformation techniques. Programmers can understand, explore,

and debug data wrangling code flexibly when aided by just-in-time learning tools that

accommodate multiple learning objectives.

I defended the claims of the thesis statement through four studies. In the first study (Chapter

3), I investigated the question of why is it difficult for programmers to learn another programming

language? I conducted an empirical study of Stack Overflow questions across 18 different program-

ming languages and semi-structured interviews with professional programmers [Shr20]. From our

inspection of 450 Stack Overflow questions, there were 276 instances of interference that occurred

due to faulty assumptions originating from knowledge about a different language. The interviews

revealed that programmers make failed attempts to relate a new programming language with what

they already know. Our findings inform design implications for technical authors, toolsmiths, and

language designers, such as designing documentation and automated tools that reduce interference,

anticipating uncommon language transitions during language design, and welcoming programmers

not just into a language, but its entire ecosystem.

In the second study (Chapter 4), I investigated how can we build an inclusive, welcoming online

community of practice that unites data scientists in their collective efforts to become experts? I

conducted a study on #TidyTuesday—a daily hashtag project for data scientists using R—as one

98

solution to this problem. I found that the participants were attracted to the rhythm provided by the

project, the opportunity for professional development, and becoming part of the larger R community.

Through #TidyTuesday, participants enhanced both technical and communication skills by learning

from others, adopting best practices in R, and building an online presence. #TidyTuesday was

effective in forming an online CoP by disseminating best practices, providing opportunities for

curations to satisfy community needs, bootstrapping offline events and promoting an inclusive,

welcoming community.

Following up on the second study, in Chapter 5 I studied how can we support data scientists

interactively learn data wrangling programming, especially as they adapt code? Data scientists have

adopted a popular design pattern in programming called the fluent interface for composing data

wrangling code. The fluent interface works by combining multiple transformations on a data table—

or dataframes—with a single chain of expressions, which produces an output. Although fluent code

promotes legibility, the intermediate dataframes are lost, forcing data scientists to unravel the chain

through tedious code edits and re-execution. I designed a tool called Unravel that enables structural

edits via drag-and-drop and toggle switch interactions to help data scientists explore and understand

fluent code. Data scientists can apply simple structural edits via drag-and-drop and toggle switch

interactions to reorder and (un)comment lines. To help data scientists understand fluent code,

Unravel provides function summaries and always-on visualizations highlighting important changes

to a dataframe. We discuss the design motivations behind Unravel and how it helps understand

and explore fluent code. In a first-use study with 26 data scientists, I found that Unravel facilitated

diverse activities such as validating assumptions about the code or data, exploring alternatives, and

revealing function behavior.

Finally, I then studied how we can use a just-in-time learning tool like Unravel to facilitate

exploratory analysis work, especially when it comes to debugging data wrangling code and data

(Chapter 6). Through formative interviews, we identified several types of data quality issues and the

manual checks that are required throughout the data wrangling. I extended Unravel to incorporate

a new view called Data Details, which displays descriptive statistics about the dataframe columns at

each step of a transformation pipeline. and Code Overlay and Table enhancements. I also extended

Unravel to support learning by adding Function Help, a feature that allows users to click on a function

to open its documentation in the IDE. Through a user study with 18 data scientists, we found Unravel

and the extensions we added helped data scientists better explore data wrangling code and data,

triangulate and validate assumptions using multiple views, and diagnose data wrangling code by

allowing them to pinpoint a broken transformation step. I discussed future work for data wrangling

tools that support flexible, and interactive tools for learners, educators, and programmers.

7.1 Future Work

There are many avenues of research that are worth pursuing which are beyond the scope of this

dissertation. Here are a few directions for related to just-in-time learning in data science:

99

• Synthesizing data wrangling code. This dissertation investigated the use of interactive tools

to help data scientists explore existing code. But, data scientists are a diverse group of people,

many of whom are not formally trained in programming. Future research can work on how to

best synthesize data wrangling code that produces simple, readable and trustable code. How

can we use program synthesis or programming by example approaches to help novice data

scientists compose code?

• Intelligent data smell tools. This dissertation only began to scratch the surface of how we

could detect data smells and reliably categorize them by type or severity. In Chapter 6, we

touched on the challenges in this space because certain issues might not be automated away

since it requires contextual understanding around the source of the data. However, there

could be some promising research around categorizing them for data science programming

in general. What if we had data smell linting in our IDEs? How would that change data science

programming?

• Learning data wrangling with AI pair programmers. GitHub CoPilot has raised some in-

teresting questions about the future of programming as we head towards more and more

automation of code composition. One problem with data wrangling is that it can initially

be very daunting to learn all of the patterns to shape data for analysis tools. Could a tool

like CoPilot help in speeding up the learning process? Or, will it cause more harm to our

understanding of code?

100

BIBLIOGRAPHY

[Ame19] Amershi, S. et al. “Software engineering for machine learning: A case study”. 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP). IEEE. 2019, pp. 291–300.

[And06] Anderson, B. Imagined communities: Reflections on the origin and spread of national-
ism. Verso books, 2006.

[Ant10] Antin, J. & Cheshire, C. “Readers Are Not Free-Riders: Reading as a Form of Participation
on Wikipedia”. Proceedings of the 2010 ACM Conference on Computer Supported
Cooperative Work. CSCW ’10. Savannah, Georgia, USA: Association for Computing
Machinery, 2010, pp. 127–130.

[Arm07] Armstrong, D. J. & Hardgrave, B. C. “Understanding mindshift learning: the transition
to object-oriented development”. MIS Quarterly (2007), pp. 453–474.

[Aue17] Aue, W. R. et al. “Evaluating mechanisms of proactive facilitation in cued recall”. Journal
of Memory and Language 94 (2017), pp. 103–118.

[Aug16] Augspurger, T. Modern Pandas (Part 5): Tidy Data. 2016. URL:https://tomaugspurger.
github.io/modern-5-tidy.html.

[Bac14] Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. R package version
1.5. 2014.

[Bad05] Badre, D. & Wagner, A. D. “Frontal lobe mechanisms that resolve proactive interference”.
Cerebral Cortex 15.12 (2005), pp. 2003–2012.

[Bal18] Baltes, S. et al. “SOTorrent: studying the origin, evolution, and usage of Stack Overflow
code snippets”. CoRR abs/1809.02814 (2018). arXiv: 1809.02814.

[Bar16] Barik, T. et al. “From quick fixes to slow fixes: Reimagining static analysis resolutions
to enable design space exploration”. 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2016, pp. 211–221.

[Bar18a] Barik, T. et al. “How should compilers explain problems to developers?” Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018. 2018,
pp. 633–643.

[Bar18b] Bart, A. C. et al. “Reconciling the Promise and Pragmatics of Enhancing Computing
Pedagogy with Data Science”. Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. 2018, pp. 1029–1034.

[Bar20] Baruffa, O. & Son, V. van. Twitter for R programmers. 2020. URL:https://www.t4rstats.
com/index.html.

101

https://tomaugspurger.github.io/modern-5-tidy.html
https://tomaugspurger.github.io/modern-5-tidy.html
https://arxiv.org/abs/1809.02814
https://www.t4rstats.com/index.html
https://www.t4rstats.com/index.html

[Bel90] Bellamy, R. & Gilmore, D. “Programming plans: internal or external structures”. Lines of
Thinking: Reflections on the Psychology of Thought 2 (1990), pp. 59–72.

[Ber17] Bernhardsson, E. The eigenvector of "why we moved from language X to language Y".
2017. URL: https://erikbern.com/2017/03/15/the-eigenvector-of-why-
we-moved-from-language-x-to-language-y.html.

[Ber14] Berry, Michael and Kölling, Michael. “The state of play: a notional machine for learning
programming”. Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education. 2014, pp. 21–26.

[Bie14] Bierman, G. et al. “Understanding TypeScript”. ECOOP 2014 – Object-Oriented Pro-
gramming. Ed. by Jones, R. 2014, pp. 257–281.

[Bou81] Boulay, B. du et al. “The black box inside the glass box: presenting computing concepts
to novices”. International Journal of Man-Machine Studies 14.3 (1981), pp. 237–249.

[Bow11] Bower, M. & McIver, A. “Continual and explicit comparison to promote proactive facilita-
tion during second computer language learning”. Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science Education. ITiCSE ’11.
2011, pp. 218–222.

[Bra09] Brandt, J. et al. “Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code”. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 2009, pp. 1589–1598.

[Bra19] Braun, V. et al. “Thematic Analysis”. Handbook of Research Methods in Health Social
Sciences. Ed. by Liamputtong, P. Singapore: Springer Singapore, 2019, pp. 843–860.

[Bro83] Brooks, R. “Towards a theory of the comprehension of computer programs”. Interna-
tional Journal of Man-Machine Studies 18.6 (1983), pp. 543–554.

[Bro00] Brown, J. Yak Shaving. 2000.

[Bry] Bryan, J. gapminder: Data from Gapminder. https://github.com/jennybc/gapminder,
http://www.gapminder.org/data/, https://doi.org/10.5281/zenodo.594018.

[Bry05] Bryant, S. L. et al. “Becoming Wikipedian: Transformation of Participation in a Collabo-
rative Online Encyclopedia”. Proceedings of the 2005 International ACM SIGGROUP
Conference on Supporting Group Work. GROUP ’05. Sanibel Island, Florida, USA: Asso-
ciation for Computing Machinery, 2005, pp. 1–10.

[Bur13] Burg, B. et al. “Interactive record/replay for web application debugging”. Proceedings
of the 26th Annual ACM Symposium on User Unterface Software and Technology. 2013,
pp. 473–484.

[Cam20] Campise, K. Guide to Data Science Bootcamps — Complete listing of Bootcamps in
the US. 2020. URL: https://www.discoverdatascience.org/programs/data-
science-bootcamps/.

102

https://erikbern.com/2017/03/15/the-eigenvector-of-why-we-moved-from-language-x-to-language-y.html
https://erikbern.com/2017/03/15/the-eigenvector-of-why-we-moved-from-language-x-to-language-y.html
https://www.discoverdatascience.org/programs/data-science-bootcamps/
https://www.discoverdatascience.org/programs/data-science-bootcamps/

[Car10] Carlson, J. A. “Avoiding traps in member checking.” Qualitative Report 15.5 (2010),
pp. 1102–1113.

[Bco] Certified B Corporation. URL: https://bcorporation.net.

[Cha21] Chang, W. et al. shiny: Web Application Framework for R. R package version 1.6.0.9000.
2021.

[Cha06] Charmaz, K. Constructing grounded theory: A practical guide through qualitative anal-
ysis. sage, 2006.

[Cha20] Chattopadhyay, S. et al. “What’s Wrong with Computational Notebooks? Pain Points,
Needs, and Design Opportunities”. Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 2020, pp. 1–12.

[Pan] Comparison with R / R libraries. 2014. URL: https://pandas.pydata.org/pandas-
docs/stable/getting_started/comparison/comparison_with_r.html.

[Cra11] Cranshaw, J. & Kittur, A. “The polymath project: lessons from a successful online collab-
oration in mathematics”. Proceedings of the SIGCHI conference on human factors in
computing systems. 2011, pp. 1865–1874.

[Cre] Create React App. 2019. URL: https://create-react-app.dev.

[Cui12] Cui, A. et al. “Discover breaking events with popular hashtags in twitter”. Proceedings
of the 21st ACM international conference on Information and knowledge management.
2012, pp. 1794–1798.

[Dab12] Dabbish, L. et al. “Social coding in GitHub: transparency and collaboration in an open
software repository”. Proceedings of the ACM 2012 conference on computer supported
cooperative work. 2012, pp. 1277–1286.

[Dac96] Daconta, M. C. Java for C/C++ Programmers. Wiley New York, 1996.

[Dan12] Danielsiek, H. et al. “Detecting and understanding students’ misconceptions related to
algorithms and data structures”. Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education. ACM. 2012, pp. 21–26.

[Das03] Dasu, T. & Johnson, T. Exploratory Data Mining and Data Cleaning. Vol. 479. John Wiley
& Sons, 2003.

[Dav12] Davenport, T. H. & Patil, D. “Data scientist”. Harvard business review 90.5 (2012), pp. 70–
76.

[DeL21] DeLine, R. A. “Glinda: Supporting Data Science with Live Programming, GUIs and
a Domain-specific Language”. Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. 2021, pp. 1–11.

[Den08] Denny, P. et al. “Evaluating a new exam question: Parsons problems”. Proceedings of the
Fourth International Workshop on Computing Education Research. 2008, pp. 113–124.

103

https://bcorporation.net
https://pandas.pydata.org/pandas-docs/stable/getting_started/ comparison/comparison_with_r.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/ comparison/comparison_with_r.html
https://create-react-app.dev

[Dét95] Détienne, F. “Design strategies and knowledge in object-oriented programming: effects
of experience”. Human–Computer Interaction 10.2-3 (1995), pp. 129–169.

[Dri] Dribbble - Discover the World’s Top Designers & Creative Professionals. URL: https:
//dribbble.com.

[Dro20] Drosos, I. et al. “Wrex: A unified programming-by-example interaction for synthesizing
readable code for data scientists”. Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 2020, pp. 1–12.

[DB86] Du Boulay, B. “Some difficulties of learning to program”. Journal of Educational Com-
puting Research 2.1 (1986), pp. 57–73.

[Elb21] Elbers, B. tidylog: Logging for ’dplyr’ and ’tidyr’ Functions. R package version 1.0.2.9000.
2021.

[Eri08] Erickson, I. “The translucence of Twitter”. Ethnographic praxis in industry conference
proceedings. Vol. 2008. 1. Wiley Online Library. 2008, pp. 64–78.

[Faa18] Faas, T. et al. “Watch Me Code: Programming Mentorship Communities on Twitch.Tv”.
Proc. ACM Hum.-Comput. Interact. 2.CSCW (2018).

[Fab22] Fabri, A. pipediff: Show Diffs Between Piped Steps. R package version 0.0.0.9000. 2022.

[Fer20] Ferdowsifard, K. et al. “Small-Step live programming by example”. Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 2020, pp. 614–
626.

[Fie17] Fiesler, C. et al. “Growing their own: Legitimate peripheral participation for computa-
tional learning in an online fandom community”. Proceedings of the 2017 ACM confer-
ence on computer supported cooperative work and social computing. 2017, pp. 1375–
1386.

[For16] Ford, D. et al. “Paradise Unplugged: Identifying Barriers for Female Participation on
Stack Overflow”. Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2016. Seattle, WA, USA: Association for
Computing Machinery, 2016, pp. 846–857.

[For18] Ford, D. et al. ““We Don’t Do That Here”: How Collaborative Editing with Mentors
Improves Engagement in Social Q&A Communities”. Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada:
Association for Computing Machinery, 2018.

[Fow10] Fowler, M. Domain-specific Languages. Pearson Education, 2010.

[Fow05] Fowler, M. & Evans, E. “Fluent interface”. martinfowler.com (2005).

[Ger13] German, D. M. et al. “The evolution of the R software ecosystem”. 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE. 2013, pp. 243–252.

104

https://dribbble.com
https://dribbble.com

[Gil16] Gilbert, S. “Learning in a Twitter-based community of practice: an exploration of knowl-
edge exchange as a motivation for participation in #hcsmca”. Information, Communi-
cation & Society 19.9 (2016), pp. 1214–1232.

[Gil88] Gilmore, D. J. & Green, T. R. G. “Programming plans and programming expertise”. The
Quarterly Journal of Experimental Psychology Section A 40.3 (1988), pp. 423–442.

[Gla67] Glaser, B. G. & Strauss, A. L. “Grounded theory: Strategies for qualitative research”.
Chicago, lL: Aldine Publishing Company (1967).

[Goe3] Goetz, M. ways data preparation tools help you get ahead of big data. Forrester. 3.

[Gra14] Graham, T. & Wright, S. “Discursive equality and everyday talk online: The impact
of “superparticipants””. Journal of Computer-Mediated Communication 19.3 (2014),
pp. 625–642.

[Gre19] Greve, B. A Beginner’s Guide to Clean Data: Practical advice to spot and avoid data
quality problems. 2019.

[Gru11] Gruzd, A. et al. “Imagining Twitter as an imagined community”. American Behavioral
Scientist 55.10 (2011), pp. 1294–1318.

[Guo13] Guo, P. J. “Online Python Tutor: embeddable web-based program visualization for CS
education”. Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. ACM. 2013, pp. 579–584.

[Guo11] Guo, P. J. et al. “Proactive wrangling: Mixed-initiative end-user programming of data
transformation scripts”. Proceedings of the 24th annual ACM symposium on User
interface software and technology. 2011, pp. 65–74.

[Guo12] Guo, P. J. “Software tools to facilitate research programming”. PhD thesis. Stanford
University Stanford, CA, 2012.

[Har15] Hardin, J. et al. “Data science in statistics curricula: Preparing students to “think with
data””. The American Statistician 69.4 (2015), pp. 343–353.

[Hea19] Head, A. et al. “Managing messes in computational notebooks”. Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 2019, pp. 1–12.

[Hee21] Heer, J. Data Wrangler. 2021.

[Her20] Hertweck, K. If you build it, they will come...but then what? Facilitating communities
of practice in R. 2020. URL: https://rstudio.com/resources/rstudioconf-
2020/if-you-build-it-they-will-come-but-then-what-facilitating-
communities-of-practice-in-r/.

[Hol19] Holikatti, M. et al. “Learning to Airbnb by engaging in online communities of practice”.
Proceedings of the ACM on Human-Computer Interaction 3.CSCW (2019), pp. 1–19.

105

https://rstudio.com/resources/rstudioconf-2020/if-you-build-it-they-will-come-but-then-what-facilitating-communities-of-practice-in-r/
https://rstudio.com/resources/rstudioconf-2020/if-you-build-it-they-will-come-but-then-what-facilitating-communities-of-practice-in-r/
https://rstudio.com/resources/rstudioconf-2020/if-you-build-it-they-will-come-but-then-what-facilitating-communities-of-practice-in-r/

[Hor20] Horst, A. M. et al. palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R
package version 0.1.0. 2020.

[Hou17] Hou, Y. & Wang, D. “Hacking with NPOs: collaborative analytics and broker roles in civic
data hackathons”. Proceedings of the ACM on Human-Computer Interaction 1.CSCW
(2017), pp. 1–16.

[Hou] Hould, J.-N. Tidy Data in Python. URL: https://www.jeannicholashould.com/
tidy-data-in-python.html.

[Hub08] Huberman, B. A. et al. “Social networks that matter: Twitter under the microscope”.
arXiv preprint arXiv:0812.1045 (2008).

[Hug] Hughes, E. & Ward, P. TidyX. URL:https://www.youtube.com/channel/UCP8l94xtoemCH_
GxByvTuFQ/.

[Iha96] Ihaka, R. & Gentleman, R. “R: a language for data analysis and graphics”. Journal of
computational and graphical statistics 5.3 (1996), pp. 299–314.

[Joh15] Johnson, B. et al. “Bespoke tools: adapted to the concepts developers know”. Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM. 2015,
pp. 878–881.

[Jon02] Jones, A. C# for Java developers. AOL Time Warner Book Group, 2002.

[Jon97] Jones, Q. “Virtual-communities, virtual settlements & cyber-archaeology: A theoretical
outline”. Journal of Computer-Mediated Communication 3.3 (1997), JCMC331.

[Jon06] Jonides, J. & Nee, D. “Brain mechanisms of proactive interference in working memory”.
Neuroscience 139.1 (2006), pp. 181–193.

[Jon98] Jonides, J. et al. “Inhibition in verbal working memory revealed by brain activation”.
Proceedings of the National Academy of Sciences 95.14 (1998), pp. 8410–8413.

[Kac10] Kaczmarczyk, L. C. et al. “Identifying student misconceptions of programming”. Com-
puter Science Education (SIGCSE). 2010, pp. 107–111.

[Kag17] Kaggle. 2017 Kaggle Machine learning & Data Science Survey. 2017. URL: https://www.
kaggle.com/kaggle/kaggle-survey-2017.

[Kag20] Kaggle. State of Data Science and Machine learning 2020. 2020. URL: https://www.
kaggle.com/kaggle-survey-2020.

[Kan11] Kandel, S. et al. “Wrangler: Interactive visual specification of data transformation scripts”.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011,
pp. 3363–3372.

[Kan12] Kandel, S. et al. “Enterprise data analysis and visualization: An interview study”. IEEE
Transactions on Visualization and Computer Graphics 18.12 (2012), pp. 2917–2926.

106

https://www.jeannicholashould.com/tidy-data-in-python.html
https://www.jeannicholashould.com/tidy-data-in-python.html
https://www.youtube.com/channel/UCP8l94xtoemCH_GxByvTuFQ/
https://www.youtube.com/channel/UCP8l94xtoemCH_GxByvTuFQ/
https://www.kaggle.com/kaggle/kaggle-survey-2017
https://www.kaggle.com/kaggle/kaggle-survey-2017
https://www.kaggle.com/kaggle-survey-2020
https://www.kaggle.com/kaggle-survey-2020

[Kel05] Kelleher, C. & Pausch, R. “Lowering the barriers to programming: a taxonomy of pro-
gramming environments and languages for novice programmers”. ACM Computing
Surveys (CSUR) 37.2 (2005), pp. 83–137.

[Ker17a] Kery, M. B. & Myers, B. A. “Exploring exploratory programming”. 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE. 2017, pp. 25–29.

[Ker17b] Kery, M. B. et al. “Variolite: Supporting exploratory programming by data scientists”.
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
2017, pp. 1265–1276.

[Ker17c] Kery, M. B. et al. “Variolite: Supporting Exploratory Programming by Data Scientists”.
CHI. Vol. 10. 2017, pp. 3025453–3025626.

[Ker18] Kery, M. B. et al. “The story in the notebook: Exploratory data science using a literate
programming tool”. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 2018, pp. 1–11.

[Ker19] Kery, M. B. et al. “Towards effective foraging by data scientists to find past analysis
choices”. Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 2019, pp. 1–13.

[Ker20] Kery, M. B. et al. “mage: Fluid moves between code and graphical work in computa-
tional notebooks”. Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology. 2020, pp. 140–151.

[Kim16] Kim, M. et al. “The emerging role of data scientists on software development teams”.
2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE.
2016, pp. 96–107.

[Ko04a] Ko, A. J. & Myers, B. A. “Designing the Whyline: A debugging interface for asking ques-
tions about program behavior”. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2004, pp. 151–158.

[Ko04b] Ko, A. J. et al. “Six learning barriers in end-user programming systems”. 2004 IEEE
Symposium on Visual Languages-Human Centric Computing. IEEE. 2004, pp. 199–206.

[Ko11] Ko, A. J. et al. “The state of the art in end-user software engineering”. ACM Computing
Surveys (CSUR) 43.3 (2011), pp. 1–44.

[Kos14] Kostkova, P. et al. “#swineflu: The use of twitter as an early warning and risk commu-
nication tool in the 2009 swine flu pandemic”. ACM Transactions on Management
Information Systems (TMIS) 5.2 (2014), pp. 1–25.

[Kou17] Kou, Y. & Gray, C. M. “Supporting Distributed Critique through Interpretation and Sense-
Making in an Online Creative Community”. Proc. ACM Hum.-Comput. Interact. 1.CSCW
(2017).

[Kou18] Kou, Y. et al. “Understanding Social Roles in an Online Community of Volatile Practice:
A Study of User Experience Practitioners on Reddit”. Trans. Soc. Comput. 1.4 (2018).

107

[Kri] Kriebel, A. & Eva, M. Makeover Monday. URL: https://www.makeovermonday.co.
uk.

[Kro19] Kross, S. & Guo, P. J. “Practitioners teaching data science in industry and academia:
Expectations, workflows, and challenges”. Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 2019, pp. 1–14.

[Lan77] Landis, J. R. & Koch, G. G. “The measurement of observer agreement for categorical
data”. Biometrics (1977), pp. 159–174.

[Lan] Langserver.org. URL: https://langserver.org/.

[Lau21] Lau, S. et al. “TweakIt: Supporting end-user programmers who transmogrify code”.
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
2021, pp. 1–12.

[Lav91] Lave, J., Wenger, E., et al. Situated learning: Legitimate peripheral participation. Cam-
bridge university press, 1991.

[Lee13] Lee, Y. Y. et al. “Drag-and-drop refactoring: Intuitive and efficient program transforma-
tion”. 2013 35th International Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 23–32.

[Ler20] Lerner, S. “Projection boxes: On-the-fly reconfigurable visualization for live program-
ming”. Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 2020, pp. 1–7.

[Lie14] Lieber, T. et al. “Addressing misconceptions about code with always-on programming
visualizations”. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 2014, pp. 2481–2490.

[Lin79] Linger, R. C. et al. “Structured programming: theory and practice” (1979).

[Liu17] Liu, F. et al. “Selfies as social movements: Influences on participation and perceived
impact on stereotypes”. Proceedings of the ACM on Human-Computer Interaction
1.CSCW (2017), p. 72.

[Loh17] Lohr, S. “Where the STEM jobs are (and where they aren’t)”. New York Times 1 (2017).

[Lon17] Long, W. Analyzing GitHub, how developers change programming languages over time.
2017. URL: https://blog.sourced.tech/post/language_migrations/.

[LK13] Loureiro-Koechlin, C. & Butcher, T. “The emergence of converging communities via
Twitter”. The Journal of Community Informatics 9.3 (2013).

[Mar13a] Marlow, J. & Dabbish, L. “Activity traces and signals in software developer recruitment
and hiring”. Proceedings of the 2013 conference on Computer supported cooperative
work. 2013, pp. 145–156.

108

https://www.makeovermonday.co.uk
https://www.makeovermonday.co.uk
https://langserver.org/
https://blog.sourced.tech/post/language_migrations/

[Mar14] Marlow, J. & Dabbish, L. “From Rookie to All-Star: Professional Development in a Graphic
Design Social Networking Site”. Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing. CSCW ’14. Baltimore, Maryland, USA:
Association for Computing Machinery, 2014, pp. 922–933.

[Mar13b] Marlow, J. et al. “Impression formation in online peer production: activity traces and
personal profiles in github”. Proceedings of the 2013 conference on Computer supported
cooperative work. 2013, pp. 117–128.

[Mar18] Martin, K. G. Preparing data for analysis is (more than) half the battle. Analysis Factor.
2018.

[Mas10] Mason, M. “Sample size and saturation in PhD studies using qualitative interviews”.
Forum Qualitative Sozialforschung/Forum: Qualitative Social Research. Vol. 11. 3. 2010.

[McM86] McMillan, D. W. & Chavis, D. M. “Sense of community: A definition and theory”. Journal
of community psychology 14.1 (1986), pp. 6–23.

[Mey13] Meyerovich, L. A. & Rabkin, A. S. “Empirical analysis of programming language adop-
tion”. ACM SIGPLAN Notices. Vol. 48. 10. ACM. 2013, pp. 1–18.

[Mid20] Middleton, J. et al. “Data Analysts and Their Software Practices: A Profile of the Saber-
metrics Community and Beyond”. Proceedings of the ACM on Human-Computer Inter-
action 4.CSCW1 (2020), pp. 1–27.

[Moc18] Mock, T. The Mockup Blog: TidyTuesday. 2018.

[Moc22] Mock, T. Tidy Tuesday: A weekly data project aimed at the R ecosystem. 2022.

[Mos52] Moser, C. A. “Quota sampling”. Journal of the Royal Statistical Society. Series A (General)
115.3 (1952), pp. 411–423.

[Mos] Mostipak, J. Join the “R for Data Science” online learning community. URL: https:
//www.jessemaegan.com/post/join-the-r-for-data-science-online-
learning-community/.

[Mug14] Mugar, G. et al. “Planet Hunters and Seafloor Explorers: Legitimate Peripheral Participa-
tion through Practice Proxies in Online Citizen Science”. Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social Computing. CSCW ’14.
Baltimore, Maryland, USA: Association for Computing Machinery, 2014, pp. 109–119.

[Mul19] Muller, M. et al. “How data science workers work with data: Discovery, capture, cura-
tion, design, creation”. Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 2019, pp. 1–15.

[Nel97] Nelson, H. J. et al. “Journeys up the mountain: different paths to learning object-oriented
programming”. Accounting, Management and Information Technologies 7.2 (1997),
pp. 53–85.

109

https://www.jessemaegan.com/post/join-the-r-for-data-science-online-learning-community/
https://www.jessemaegan.com/post/join-the-r-for-data-science-online-learning-community/
https://www.jessemaegan.com/post/join-the-r-for-data-science-online-learning-community/

[Nel09] Nelson, H. J. et al. “Patterns of transition: the shift from traditional to object-oriented
development”. Journal of Management Information Systems 25.4 (2009), pp. 271–298.

[Dat] New Course: Python for R Users. 2018. URL:https://www.datacamp.com/community/
blog/course-python-r-users.

[Ni21] Ni, W. et al. “reCode: A Lightweight Find-and-Replace Interaction in the IDE for Trans-
forming Code by Example”. The 34th Annual ACM Symposium on User Interface Soft-
ware and Technology. 2021, pp. 258–269.

[Nie17] Niederer, C. et al. “TACO: Visualizing changes in tables over time”. IEEE Transactions
on Visualization and Computer Graphics 24.1 (2017), pp. 677–686.

[Nor00] Norvig, P. Python for Lisp Programmers. 2000. URL: https://norvig.com/python-
lisp.html.

[Ohr17] Ohri, A. Python for R Users: A Data Science Approach. John Wiley & Sons, 2017.

[Par] Parr, T. Clarifying exceptions and visualizing tensor operations in deep learning code.
URL: https://explained.ai/tensor-sensor/index.html.

[Pas19] Pasquini, L. A. & Eaton, P. W. “The# acadv Community: Networked Practices, Professional
Development, and Ongoing Knowledge Sharing in Advising”. NACADA Journal 39.1
(2019), pp. 101–115.

[Pas17] Passi, S. & Jackson, S. “Data Vision: Learning to See Through Algorithmic Abstraction”.
Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work
and Social Computing. CSCW ’17. Portland, Oregon, USA: Association for Computing
Machinery, 2017, pp. 2436–2447.

[Pas18] Passi, S. & Jackson, S. J. “Trust in Data Science: Collaboration, Translation, and Account-
ability in Corporate Data Science Projects”. Proc. ACM Hum.-Comput. Interact. 2.CSCW
(2018).

[Pen87] Pennington, N. “Stimulus structures and mental representations in expert comprehen-
sion of computer programs”. Cognitive Psychology 19.3 (1987), pp. 295–341.

[Pip] Pipe. URL: https://magrittr.tidyverse.org/reference/pipe.html.

[Pos04a] Postle, B. R. & Brush, L. N. “The neural bases of the effects of item-nonspecific proactive
interference in working memory”. Cognitive, Affective, & Behavioral Neuroscience 4.3
(2004), pp. 379–392.

[Pos04b] Postle, B. R. et al. “Prefrontal cortex and the mediation of proactive interference in
working memory”. Cognitive, Affective, & Behavioral Neuroscience 4.4 (2004), pp. 600–
608.

[Pot11] Potts, L. et al. “Tweeting disaster: hashtag constructions and collisions”. Proceedings of
the 29th ACM international conference on Design of communication. 2011, pp. 235–240.

110

https://www.datacamp.com/community/blog/course-python-r-users
https://www.datacamp.com/community/blog/course-python-r-users
https://norvig.com/python-lisp.html
https://norvig.com/python-lisp.html
https://explained.ai/tensor-sensor/index.html
https://magrittr.tidyverse.org/reference/pipe.html

[Pu21] Pu, X. et al. “Datamations: Animated explanations of data analysis pipelines”. Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021, pp. 1–
14.

[Mat] Python for MATLAB Users. URL: https://www.datacamp.com/courses/python-
for-matlab-users.

[Qia17] Qian, Y. & Lehman, J. “Students’ misconceptions and other difficulties in introductory
programming: a literature review”. ACM Transactions on Computing Education (TOCE)
18.1 (2017), p. 1.

[Qua17] QuantEcon. MATLAB–Python–Julia cheatsheet. 2017. URL: https://cheatsheets.
quantecon.org.

[Rla] R-Ladies Global & R-Ladies is a world-wide organization to promote gender diversity in
the R community. URL: https://rladies.org.

[Rpr] R: The R Project for Statistical Computing. URL: https://www.r-project.org.

[Rat17] Rattenbury, T. et al. Principles of data wrangling: Practical techniques for data prepara-
tion. " O’Reilly Media, Inc.", 2017.

[Rus] References and borrowings. URL: https://doc.rust-lang.org/1.8.0/book/
references-and-borrowing.html.

[Rey] Reynolds, G. Tidy Tuesday Highlights. URL:https://evamaerey.github.io/tidytuesday_
walk_through/tidytuesday_highlights.html.

[Ric81] Rich, C. Inspection Methods in Programming. Tech. rep. TR-604. MIT, 1981.

[RD22] Rill Data, I. Data Wrangler. 2022.

[Ros20] Rosenberg, J. et al. “Becoming ‘Tidier’ Over Time: Studying# tidytuesday as a Social
Media-Based Context for Learning to Visualize Data” (2020).

[Rsta] RStudio - RStudio. URL: https://rstudio.com/products/rstudio/.

[Rstb] RStudio | Open source & professional software for data science teams - RStudio. URL:
https://rstudio.com.

[RSt20] RStudio, P. RStudio Primers. 2020. URL: https://rstudio.cloud/learn/primers.

[Rstc] rstudio::conf. 2020. URL:https://rstudio.com/resources/rstudioconf-2020/.

[Rul18] Rule, A. et al. “Exploration and explanation in computational notebooks”. Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 2018, pp. 1–12.

[Blo] Rust for C++ programmers. 2014. URL: http://featherweightmusings.blogspot.
com/2014/04/rust-for-c-programmers-part-1-hello.html.

[SL22] Sam Lau, P. G. Pandas Tutor - visualize Python pandas code. 2022.

111

https://www.datacamp.com/courses/python-for-matlab-users
https://www.datacamp.com/courses/python-for-matlab-users
https://cheatsheets.quantecon.org
https://cheatsheets.quantecon.org
https://rladies.org
https://www.r-project.org
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://evamaerey.github.io/tidytuesday_walk_through/tidytuesday_highlights.html
https://evamaerey.github.io/tidytuesday_walk_through/tidytuesday_highlights.html
https://rstudio.com/products/rstudio/
https://rstudio.com
https://rstudio.cloud/learn/primers
https://rstudio.com/resources/rstudioconf-2020/
http://featherweightmusings.blogspot.com/2014/04/rust-for-c-programmers-part-1-hello.html
http://featherweightmusings.blogspot.com/2014/04/rust-for-c-programmers-part-1-hello.html

[Sca08] Scaffidi, C. et al. “Topes”. 2008 ACM/IEEE 30th International Conference on Software
Engineering. IEEE. 2008, pp. 1–10.

[Sch21] Schloerke, B. et al. learnr: Interactive Tutorials for R. https://rstudio.github.io/learnr/,
https://github.com/rstudio/learnr. 2021.

[Sch90] Scholtz, J. & Wiedenbeck, S. “Learning second and subsequent programming languages:
A problem of transfer”. International Journal of Human–Computer Interaction 2.1
(1990), pp. 51–72. eprint: https://doi.org/10.1080/10447319009525970.

[SK22] Sean Kross, P. G. Tidy Data Tutor - Visualize R tidyverse code data pipelines. 2022.

[See17] Seering, J. et al. “Shaping pro and anti-social behavior on twitch through moderation
and example-setting”. Proceedings of the 2017 ACM conference on computer supported
cooperative work and social computing. 2017, pp. 111–125.

[Seg07] Segal, J. “Some problems of professional end user developers”. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2007). IEEE. 2007, pp. 111–
118.

[Sen19] Sentance, S. et al. “Teaching computer programming with PRIMM: a sociocultural
perspective”. Computer Science Education 29.2-3 (2019), pp. 136–176.

[Shn79] Shneiderman, B. & Mayer, R. “Syntactic/semantic interactions in programmer behavior:
a model and experimental results”. Int’l J. Parallel Programming 8.3 (1979), pp. 219–238.

[Sho22] Shome, A. et al. “Data Smells in Public Datasets”. arXiv preprint arXiv:2203.08007 (2022).

[Shr19] Shrestha, N. & Parnin, C. “Instrument designs for validating cross-language behav-
ioral differences”. 2019 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE. 2019, pp. 205–209.

[Shr18] Shrestha, N. et al. “It’s like Python but: towards supporting transfer of programming
language knowledge”. 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE. 2018, pp. 177–185.

[Shr20] Shrestha, N. et al. “Here We Go Again: Why Is It Difficult for Developers to Learn Another
Programming Language?” 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 2020, pp. 691–701.

[Shr21a] Shrestha, N. et al. “Unravel: A Fluent Code Explorer for Data Wrangling”. Proceedings of
the 34th Annual ACM Symposium on User Interface Software and Technology. UIST ’21
(2021).

[Shr21b] Shrestha, N. et al. “Unravel: A Fluent Code Explorer for Data Wrangling”. The 34th
Annual ACM Symposium on User Interface Software and Technology. 2021, pp. 198–
207.

[Sla] Slack. URL: https://slack.com.

112

https://doi.org/10.1080/10447319009525970
https://slack.com

[Sol82] Soloway, E. et al. “Tapping into tacit programming knowledge”. Proceedings of the 1982
Conference on Human Factors in Computing Systems. CHI ’82. 1982, pp. 52–57.

[Ste15] Steinmacher, I. et al. “Social barriers faced by newcomers placing their first contribu-
tion in open source software projects”. Proceedings of the 18th ACM conference on
Computer supported cooperative work & social computing. 2015, pp. 1379–1392.

[Sut18] Sutton, C. et al. “Data diff: Interpretable, executable summaries of changes in distribu-
tions for data wrangling”. Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 2018, pp. 2279–2288.

[Swe03] Sweller, J. et al. “The expertise reversal effect” (2003).

[Swi18] Swidan, A. et al. “Programming misconceptions for school students”. Proceedings of
the 2018 ACM Conference on International Computing Education Research. ACM. 2018,
pp. 151–159.

[Tau17] Tausczik, Y. & Wang, P. “To Share, or Not to Share? Community-Level Collaboration in
Open Innovation Contests”. Proceedings of the ACM on Human-Computer Interaction
1.CSCW (2017), pp. 1–23.

[Top] The 50 Most Popular MOOCs of All Time. 2020. URL:https://www.onlinecoursereport.
com/the-50-most-popular-moocs-of-all-time/.

[Car] The Carpentries. URL: https://carpentries.org.

[Clo] Thinking in Clojure for Java Programmers. 2010. URL: https://www.factual.com/
blog/thinking-in-clojure-for-java-programmers-1/.

[Tida] Tidyverse. URL: https://www.tidyverse.org.

[Tidb] tidyweek. 2018. URL: https://GitHub.com/rfordatascience/tidyweek.

[Rub] To Ruby From Python. URL: https://www.ruby-lang.org/en/documentation/
ruby-from-other-languages/to-ruby-from-python/.

[Ton07] Tongco, M. D. C. “Purposive sampling as a tool for informant selection”. Ethnobotany
Research and Applications 5 (2007), pp. 147–158.

[Tre17] Treisman, R. Yale to offer new major in data science. 2017. URL:https://yaledailynews.
com/blog/2017/03/08/yale-to-offer-new-major-in-data-science/.

[Ues19] Uesbeck, P. M. & Stefik, A. “A randomized controlled trial on the impact of polyglot pro-
gramming in a database context”. 9th Workshop on Evaluation and Usability of Program-
ming Languages and Tools (PLATEAU 2018). Ed. by Barik, T. et al. Vol. 67. OpenAccess
Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, 1:1–1:8.

[Und57] Underwood, B. J. “Interference and forgetting.” Psychological Review 64.1 (1957), p. 49.

113

https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://carpentries.org
https://www.factual.com/blog/thinking-in-clojure-for-java-programmers-1/
https://www.factual.com/blog/thinking-in-clojure-for-java-programmers-1/
https://www.tidyverse.org
https://GitHub.com/rfordatascience/tidyweek
https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-python/
https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-python/
https://yaledailynews.com/blog/2017/03/08/yale-to-offer-new-major-in-data-science/
https://yaledailynews.com/blog/2017/03/08/yale-to-offer-new-major-in-data-science/

[Air] Vacation Rentals, Homes, Experiences & Places - Airbnb. URL: https://www.airbnb.
com.

[Van18] Vanhooser, A. UC Berkeley announces data science pipeline program for students. 2018.
URL: https://www.dailycal.org/2018/09/20/uc-berkeley-announces-
data-science-pipeline-program-for-students/.

[Vas14a] Vasilescu, B. “Social aspects of collaboration in online software communities” (2014).

[Vas14b] Vasilescu, B. et al. “How Social Q&A Sites Are Changing Knowledge Sharing in Open
Source Software Communities”. Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing. CSCW ’14. Baltimore, Maryland, USA:
Association for Computing Machinery, 2014, pp. 342–354.

[Wan19] Wang, A. Y. et al. “How data scientists use computational notebooks for real-time col-
laboration”. Proceedings of the ACM on Human-Computer Interaction 3.CSCW (2019),
pp. 1–30.

[Wan22] Wang, A. Y. et al. “Diff in the Loop: Supporting Data Comparison in Exploratory Data
Analysis”. CHI Conference on Human Factors in Computing Systems. 2022, pp. 1–10.

[War22] Waring, E. et al. skimr: Compact and Flexible Summaries of Data. R package version
2.1.4. 2022.

[Was] Wastl, E. Advent of Code. URL: https://adventofcode.com.

[Way] Wayne, H. Syntax highlighting is a waste of an information channel. URL: https:
//buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-
waste-of-an-information/.

[Wei21] Weinman, N. et al. “Fork It: Supporting stateful alternatives in computational note-
books”. Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 2021, pp. 1–12.

[Wen99] Wenger, E. Communities of practice: Learning, meaning, and identity. Cambridge uni-
versity press, 1999.

[Wen02a] Wenger, E. et al. Cultivating communities of practice: A guide to managing knowledge.
Harvard Business Press, 2002.

[Wen02b] Wenger, E. et al. “Seven principles for cultivating communities of practice”. Cultivating
Communities of Practice: a guide to managing knowledge 4 (2002).

[Tab] We’re changing the way you think about data. URL: https://www.tableau.com/
trial/tableau-software.

[Wic16] Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016.

[Wic17] Wickham, H. R for Data Science. O’Reilly, 2017.

114

https://www.airbnb.com
https://www.airbnb.com
https://www.dailycal.org/2018/09/20/uc-berkeley-announces-data-science-pipeline-program-for-students/
https://www.dailycal.org/2018/09/20/uc-berkeley-announces-data-science-pipeline-program-for-students/
https://adventofcode.com
https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-waste-of-an-information/
https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-waste-of-an-information/
https://buttondown.email/hillelwayne/archive/syntax-highlighting-is-a-waste-of-an-information/
https://www.tableau.com/trial/tableau-software
https://www.tableau.com/trial/tableau-software

[Wic19a] Wickham, H. babynames: US Baby Names 1880-2017. R package version 1.0.0. 2019.

[Wic19b] Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. 2019.

[Wic14] Wickham, H. et al. “Tidy data”. Journal of Statistical Software 59.10 (2014), pp. 1–23.

[Wic21] Wickham, H. et al. dplyr: A Grammar of Data Manipulation. R package version 1.0.4.
2021.

[Wil06] Wilson, G. “Software carpentry: getting scientists to write better code by making them
more productive”. Computing in Science & Engineering 8.6 (2006), pp. 66–69.

[Wil18] Wilson, G. The Tidynomicon: A Brief Introduction to R for Python Programmers. 2018.
URL: https://gvwilson.github.io/tidynomicon/.

[Wu90] Wu, Q. & Anderson, J. R. Problem-solving transfer among programming languages.
Tech. rep. Carnegie Mellon University, 1990.

[Xu12] Xu, A. & Bailey, B. “What Do You Think? A Case Study of Benefit, Expectation, and
Interaction in a Large Online Critique Community”. Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work. CSCW ’12. Seattle, Washington,
USA: Association for Computing Machinery, 2012, pp. 295–304.

[Xu14] Xu, A. et al. “Voyant: Generating Structured Feedback on Visual Designs Using a Crowd
of Non-Experts”. Proceedings of the 17th ACM Conference on Computer Supported Co-
operative Work & Social Computing. CSCW ’14. Baltimore, Maryland, USA: Association
for Computing Machinery, 2014, pp. 1433–1444.

[Yan] Yan, Q. Tidy Data with Python. URL: https://qiushi.rbind.io/post/python-
tidy-data/.

[Ye03] Ye, Y. & Kishida, K. “Toward an understanding of the motivation of open source software
developers”. 25th International Conference on Software Engineering, 2003. Proceedings.
IEEE. 2003, pp. 419–429.

[Zag16] Zagalsky, A. et al. “How the R Community Creates and Curates Knowledge: A Compara-
tive Study of Stack Overflow and Mailing Lists”. Proceedings of the 13th International
Conference on Mining Software Repositories. MSR ’16. Austin, Texas: Association for
Computing Machinery, 2016, pp. 441–451.

[Zap11] Zappavigna, M. “Ambient affiliation: A linguistic perspective on Twitter”. New media &
society 13.5 (2011), pp. 788–806.

[Zap12] Zappavigna, M. Discourse of Twitter and social media: How we use language to create
affiliation on the web. Vol. 6. A&C Black, 2012.

[Zeg18] Zegura, E. et al. “Care and the practice of data science for social good”. Proceedings of
the 1st ACM SIGCAS Conference on Computing and Sustainable Societies. 2018, pp. 1–9.

115

https://gvwilson.github.io/tidynomicon/
https://qiushi.rbind.io/post/python-tidy-data/
https://qiushi.rbind.io/post/python-tidy-data/

[Zen19] Zeng, A. & Crichton, W. “Identifying barriers to adoption for Rust through online dis-
course”. 9th Workshop on Evaluation and Usability of Programming Languages and
Tools. 2019, p. 15.

[Zha20a] Zhang, A. X. et al. “How do data science workers collaborate? roles, workflows, and tools”.
Proceedings of the ACM on Human-Computer Interaction 4.CSCW1 (2020), pp. 1–23.

[Zha] Zhang, N. Another Book on Data Science. URL:https://www.anotherbookondatascience.
com.

[Zha20b] Zhang, T. et al. “Interactive Program Synthesis by Augmented Examples”. Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology. 2020,
pp. 627–648.

[Zhi18] Zhi, R. et al. “Exploring instructional support design in an educational game for K-12
computing education”. Proceedings of the 49th ACM technical symposium on computer
science education. 2018, pp. 747–752.

[Zhu16] Zhu, H. et al. “A contingency view of transferring and adapting best practices within on-
line communities”. Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing. 2016, pp. 729–743.

116

https://www.anotherbookondatascience.com
https://www.anotherbookondatascience.com

	LIST OF TABLES
	LIST OF FIGURES
	Thesis
	Introduction
	Challenges related to learning programming languages
	Motivating Example
	Methodology
	Research Questions
	Phase I: Study Design for Stack Overflow
	Phase II: Study Design for Interviews with Professional Programmers

	Results
	RQ1: Does cross-language interference occur?
	RQ2: How do experienced programmers learn new languages?
	RQ3: What do experienced programmers find confusing in new languages?

	Limitations
	Related Work
	Discussion and Design Implications
	Conclusion

	An online community of practice for data scientists
	Motivation
	Related Work
	Communities of Practice
	Data Scientists
	The R Community
	Hashtag Movements on Twitter

	Method
	Research Setting: #TidyTuesday
	Research Questions
	Interviews
	Analysis

	Results
	Who participates in Tidy Tuesday and what are their motivations and goals?
	What do participants gain by participating in Tidy Tuesday?
	How does social activity around Tidy Tuesday cultivate a community of practice?

	Discussion
	Lowering the barriers to entry
	Better mechanisms for practice and learning
	Organically growing an online learning CoP

	Limitations
	Conclusion

	Interactive exploration of data science code
	Motivation
	Introduction
	Related Work
	System Design and Implementation
	Design Motivations
	Implementation
	System Scope and Limitations

	Evaluation: First-Use Study
	Methods
	Post-study Survey Results
	Qualitative Results
	Unravel Helped Minimize Context Switches Between Code and Output

	Discussion and Future Work
	Conclusion

	Debugging data science code
	Motivation
	Related Work
	Formative Interviews and Design Goals

	Design and Implementation
	Exploration Mechanics
	Code Overlay
	Function Help
	Interactive Tables
	Data Details

	User Study
	Method
	Recruitment
	Study Setup
	Debugging Tasks
	Analysis

	Results
	Post-study Survey Results
	RQ1: Does Unravel help data scientists explore and understand data wrangling code for exploratory analysis?
	RQ2: How does Unravel help them identify data quality issues and debug data wrangling code?

	Discussion and Future Work
	Better Support for Novice Data Scientists
	Live Programming for Data Wrangling
	Exploring and Highlighting Data Quality Issues
	Limitations

	Conclusion

	Conclusion
	Future Work

	Bibliography

